Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings in frog oocytes may help study of chromosome physiology

15.08.2003


After immunofluorescent staining with two antibodies, the protein XCAP-D2 is evident in red on the lampbrush chromosomes (green) in the nucleus of a frog oocyte. The red signal is associated with highly condensed but transcriptionally inactive regions, while the green indicates long loops of intense transcription.
Photo courtesy of Michel Bellini


Researchers studying the nuclei of frog oocytes in early stages of meiosis -- the cell division that gives rise to germ cells -- have found that two key proteins remain apart at a crucial time before condensation occurs. One of the proteins, they say, may be important in the early organization of chromosomes and later may recruit the other.

In the August issue of the journal Chromosome Research, scientists at the University of Illinois at Urbana-Champaign detail how they used antibodies to the proteins, XCAP-E and XCAP-D2, and confocal laser scanning microscopy to zero in on the proteins’ precise locations inside the nuclei of gametes of the African frog Xenopus laevis.

(The research will be on display as a poster presentation Aug. 17-22 during the Gorden Research Conference on Plasmid & Chromosome Dynamics in Tilton, N.J.)



The proteins are from two subcomplexes of chromosome condensation proteins known as condensins. One group of the Xenopus Chromosome Associated Proteins (XCAP), including XCAP-D2, consists of regulatory proteins, while XCAP-E is among those directly involved in condensation.

"On the chromosomes, XCAP-D2 was only found associated with the chromomeres," said Michel Bellini, a professor of cell and structural biology at Illinois. That location features highly compacted chromatin, or fibers of DNA, suggesting XCAP-D2 is directly involved early in meiotic chromatin organization.

Immunofluorescent staining showed XCAP-D2 proteins on the 18 easily recognizable chromosomes of the frog oocyte. These extended chromosomes stretch out long loops of chromatin -- regions of extensive RNA synthesis -- causing them to resemble a lampbrush, and, more importantly, allowing for detailed cytological studies of the major components implicated in both RNA transcription and chromatin organization.

"When we looked for XCAP-E, we did not see it on the chromosomes," Bellini said. "Instead, it was accumulated in the nucleoli, small organelles containing ribosomal DNA."

"This discovery came as a big surprise for us," he said. "When you deal with chromosomal proteins, you expect them to be found on the chromosomes." Because the two proteins were segregated, he added, there was no overlapping of signals.

The proteins have equivalents in other organisms, so the findings may help other studies of chromosome physiology, especially the functional aspects of these proteins, Bellini said. At the critical time of cell division, chromosome packaging is vital. Genetic errors can result in deformities, diseases such as cancer and/or the death of the organism.

Frog oocytes are large, allowing researchers to easily manipulate genetic material. A nucleus, for example, is 400 microns in diameter. A human red blood cell is 8-10 microns.

Bellini’s doctoral student Brent Beenders did much of the research, which was funded by the National Institutes of Health and the Cancer Research Association of France.

"What we propose is that in the oocytes XCAP-E may not be required in the very early stages of meiosis," Bellini said. "XCAP-E is there. The fact that it is in the nucleolus may be simply to prevent its association with XCAP-D2 at this stage. Perhaps at this stage condensation is not wanted but active transcription is necessary. This might be one way to prevent condensation. The nucleolus is acting as a trap for this nuclear protein’s action. It may be that XCAP-D2 calls in XCAP-E when condensation is needed."

Bellini’s team also found both proteins in the Cajal bodies -- small independently floating organelles -- that are theorized to be important in the assembly and modification of the RNA transcription and processing machinery. "This finding suggests the exciting possibility that Cajal bodies might also be implicated in the assembly of chromatin remodeling complexes," Bellini said.

Understanding how condensation proteins operate at the cellular level will help scientists work to understand their molecular role in chromatin condensation, he added.

Other contributors to the study were Erwan Watrin and Vincent Leganeux, both of the National Center for Scientific Research in France, and Igor Kireev of the department of cell and structural biology at Illinois and Moscow State University in Russia.

Jim Barlow | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0814bellini.html

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>