Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings in frog oocytes may help study of chromosome physiology

15.08.2003


After immunofluorescent staining with two antibodies, the protein XCAP-D2 is evident in red on the lampbrush chromosomes (green) in the nucleus of a frog oocyte. The red signal is associated with highly condensed but transcriptionally inactive regions, while the green indicates long loops of intense transcription.
Photo courtesy of Michel Bellini


Researchers studying the nuclei of frog oocytes in early stages of meiosis -- the cell division that gives rise to germ cells -- have found that two key proteins remain apart at a crucial time before condensation occurs. One of the proteins, they say, may be important in the early organization of chromosomes and later may recruit the other.

In the August issue of the journal Chromosome Research, scientists at the University of Illinois at Urbana-Champaign detail how they used antibodies to the proteins, XCAP-E and XCAP-D2, and confocal laser scanning microscopy to zero in on the proteins’ precise locations inside the nuclei of gametes of the African frog Xenopus laevis.

(The research will be on display as a poster presentation Aug. 17-22 during the Gorden Research Conference on Plasmid & Chromosome Dynamics in Tilton, N.J.)



The proteins are from two subcomplexes of chromosome condensation proteins known as condensins. One group of the Xenopus Chromosome Associated Proteins (XCAP), including XCAP-D2, consists of regulatory proteins, while XCAP-E is among those directly involved in condensation.

"On the chromosomes, XCAP-D2 was only found associated with the chromomeres," said Michel Bellini, a professor of cell and structural biology at Illinois. That location features highly compacted chromatin, or fibers of DNA, suggesting XCAP-D2 is directly involved early in meiotic chromatin organization.

Immunofluorescent staining showed XCAP-D2 proteins on the 18 easily recognizable chromosomes of the frog oocyte. These extended chromosomes stretch out long loops of chromatin -- regions of extensive RNA synthesis -- causing them to resemble a lampbrush, and, more importantly, allowing for detailed cytological studies of the major components implicated in both RNA transcription and chromatin organization.

"When we looked for XCAP-E, we did not see it on the chromosomes," Bellini said. "Instead, it was accumulated in the nucleoli, small organelles containing ribosomal DNA."

"This discovery came as a big surprise for us," he said. "When you deal with chromosomal proteins, you expect them to be found on the chromosomes." Because the two proteins were segregated, he added, there was no overlapping of signals.

The proteins have equivalents in other organisms, so the findings may help other studies of chromosome physiology, especially the functional aspects of these proteins, Bellini said. At the critical time of cell division, chromosome packaging is vital. Genetic errors can result in deformities, diseases such as cancer and/or the death of the organism.

Frog oocytes are large, allowing researchers to easily manipulate genetic material. A nucleus, for example, is 400 microns in diameter. A human red blood cell is 8-10 microns.

Bellini’s doctoral student Brent Beenders did much of the research, which was funded by the National Institutes of Health and the Cancer Research Association of France.

"What we propose is that in the oocytes XCAP-E may not be required in the very early stages of meiosis," Bellini said. "XCAP-E is there. The fact that it is in the nucleolus may be simply to prevent its association with XCAP-D2 at this stage. Perhaps at this stage condensation is not wanted but active transcription is necessary. This might be one way to prevent condensation. The nucleolus is acting as a trap for this nuclear protein’s action. It may be that XCAP-D2 calls in XCAP-E when condensation is needed."

Bellini’s team also found both proteins in the Cajal bodies -- small independently floating organelles -- that are theorized to be important in the assembly and modification of the RNA transcription and processing machinery. "This finding suggests the exciting possibility that Cajal bodies might also be implicated in the assembly of chromatin remodeling complexes," Bellini said.

Understanding how condensation proteins operate at the cellular level will help scientists work to understand their molecular role in chromatin condensation, he added.

Other contributors to the study were Erwan Watrin and Vincent Leganeux, both of the National Center for Scientific Research in France, and Igor Kireev of the department of cell and structural biology at Illinois and Moscow State University in Russia.

Jim Barlow | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0814bellini.html

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>