Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings in frog oocytes may help study of chromosome physiology


After immunofluorescent staining with two antibodies, the protein XCAP-D2 is evident in red on the lampbrush chromosomes (green) in the nucleus of a frog oocyte. The red signal is associated with highly condensed but transcriptionally inactive regions, while the green indicates long loops of intense transcription.
Photo courtesy of Michel Bellini

Researchers studying the nuclei of frog oocytes in early stages of meiosis -- the cell division that gives rise to germ cells -- have found that two key proteins remain apart at a crucial time before condensation occurs. One of the proteins, they say, may be important in the early organization of chromosomes and later may recruit the other.

In the August issue of the journal Chromosome Research, scientists at the University of Illinois at Urbana-Champaign detail how they used antibodies to the proteins, XCAP-E and XCAP-D2, and confocal laser scanning microscopy to zero in on the proteins’ precise locations inside the nuclei of gametes of the African frog Xenopus laevis.

(The research will be on display as a poster presentation Aug. 17-22 during the Gorden Research Conference on Plasmid & Chromosome Dynamics in Tilton, N.J.)

The proteins are from two subcomplexes of chromosome condensation proteins known as condensins. One group of the Xenopus Chromosome Associated Proteins (XCAP), including XCAP-D2, consists of regulatory proteins, while XCAP-E is among those directly involved in condensation.

"On the chromosomes, XCAP-D2 was only found associated with the chromomeres," said Michel Bellini, a professor of cell and structural biology at Illinois. That location features highly compacted chromatin, or fibers of DNA, suggesting XCAP-D2 is directly involved early in meiotic chromatin organization.

Immunofluorescent staining showed XCAP-D2 proteins on the 18 easily recognizable chromosomes of the frog oocyte. These extended chromosomes stretch out long loops of chromatin -- regions of extensive RNA synthesis -- causing them to resemble a lampbrush, and, more importantly, allowing for detailed cytological studies of the major components implicated in both RNA transcription and chromatin organization.

"When we looked for XCAP-E, we did not see it on the chromosomes," Bellini said. "Instead, it was accumulated in the nucleoli, small organelles containing ribosomal DNA."

"This discovery came as a big surprise for us," he said. "When you deal with chromosomal proteins, you expect them to be found on the chromosomes." Because the two proteins were segregated, he added, there was no overlapping of signals.

The proteins have equivalents in other organisms, so the findings may help other studies of chromosome physiology, especially the functional aspects of these proteins, Bellini said. At the critical time of cell division, chromosome packaging is vital. Genetic errors can result in deformities, diseases such as cancer and/or the death of the organism.

Frog oocytes are large, allowing researchers to easily manipulate genetic material. A nucleus, for example, is 400 microns in diameter. A human red blood cell is 8-10 microns.

Bellini’s doctoral student Brent Beenders did much of the research, which was funded by the National Institutes of Health and the Cancer Research Association of France.

"What we propose is that in the oocytes XCAP-E may not be required in the very early stages of meiosis," Bellini said. "XCAP-E is there. The fact that it is in the nucleolus may be simply to prevent its association with XCAP-D2 at this stage. Perhaps at this stage condensation is not wanted but active transcription is necessary. This might be one way to prevent condensation. The nucleolus is acting as a trap for this nuclear protein’s action. It may be that XCAP-D2 calls in XCAP-E when condensation is needed."

Bellini’s team also found both proteins in the Cajal bodies -- small independently floating organelles -- that are theorized to be important in the assembly and modification of the RNA transcription and processing machinery. "This finding suggests the exciting possibility that Cajal bodies might also be implicated in the assembly of chromatin remodeling complexes," Bellini said.

Understanding how condensation proteins operate at the cellular level will help scientists work to understand their molecular role in chromatin condensation, he added.

Other contributors to the study were Erwan Watrin and Vincent Leganeux, both of the National Center for Scientific Research in France, and Igor Kireev of the department of cell and structural biology at Illinois and Moscow State University in Russia.

Jim Barlow | UIUC
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>