Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual Discoveries in Genetic Processing Improve Accuracy of Genome Information

11.08.2003


University of Connecticut Health Center geneticists have made a two-fold discovery in gene recoding that will significantly increase understanding of the information in genome sequences and could prove to be a knowledge expressway scientists need for unraveling nervous system disorders such as Parkinson Disease and epilepsy.

The research, published in the Aug. 8 issue of the journal Science, was supported by the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

Geneticist Robert Reenan and fellow researchers used comparative genomics to discover a telltale signature of genes that are recoded as DNA is converted to RNA during the protein-making process. There, an enzyme converts adenosine to the nucleoside inosine by a process called "A-to-I" RNA editing. The scientists subsequently found that such recoding is largely confined to the nervous system across species and pinpointed a target of the process in humans.

"The proteins targeted by editing are basically the machinery that allow nervous systems to function on a timescale of milliseconds, which is not a demand placed on every organ," said Reenan.

The phylogenetic signatures are identical sequences of genetic coding found in each species studied, serving as markers corresponding to specific genes targeted for A-to-I RNA editing. The identical presence in both species suggests that the editing site arose some time ago evolutionarily and has been retained in these species -- and likely others -- because it provides a broadly useful selective advantage for survival.

Recoding, or "RNA editing," and the entire process are much like photocopying a recipe from a cookbook and writing changes on the photocopy rather than on the book’s pages. The revisions on the copy would then be used to prepare the food, but the original recipe in the book would remain unchanged.

For cells to manufacture protein, they must first copy the segment of the gene’s DNA that holds the blueprint or Scoding" for the protein. This copy, which consists of a single strand of RNA, is called messenger RNA, or "mRNA." Converting the DNA into the mRNA instructions that code for the manufacture of protein from amino acids is called "transcription." The working mRNA copy is sometimes modified, or "recoded," as it is formed. It is unknown how many RNA transcripts for genes are recoded in the human genome because this process occurs on the copies rather than the original.

For more than a decade, sites where A-to-I RNA editing had occurred were discovered largely by chance. "The one thing that becomes clear about the RNA editing sites is that they’re all different; there (was) no way to predict where an RNA editing site would occur from genome sequence," said Reenan. "We hoped to get clues about RNA editing by comparing genomes of different species."

Clues came as the researchers compared more than 900 genes between two species of the fruit fly Drosophila. They found a signature in genomic DNA in genes shared between species where RNA transcription products are destined to be edited by the enzyme adenosine deaminase. "The signature we found was an unexpectedly high level of DNA sequence identity between species," said Reenan. The signature reliably identifies genes that are recoded during transcription, providing scientists with a means to predict the occurrence of editing.

"Being able to predict editing sites is a revolutionary discovery that will greatly increase the value of existing genome sequences," said Molecular Biologist Joanne Tornow, a program director with the NSF’s Division of Molecular and Cellular Biosciences. "Dr. Reenan’s use of comparative genomics to make this very significant finding underscores the importance of investing in the sequencing of a wide variety of organisms." Reenan and his colleagues then applied their newfound knowledge to a wide range of human, mouse and rat genes. They found the process also targets a gene in the human brain already known to foster an inherited form of epilepsy.

So far, the researchers have noticed A-to-I RNA editing in only nervous systems and specifically in genes encoding proteins necessary for sending fast electrical and chemical signals. They examined many genes not directly involved in nervous system function.

"The literal genome is not the final word and, for whatever reason, this mechanism (A-to-I editing) is almost exclusive to the nervous system," Reenan said.

With the knowledge of the signature and that A-to-I RNA editing occurs primarily in nervous systems, scientists can now more closely examine how recoding affects expression by nervous systemspecific genes, including those responsible for epilepsy and Parkinson Disease.



Principal Investigator: Robert Reenan, (+1-860) 679-3691, rreenan@neuron.uchc.edu

Manny Van Pelt | National Science Foundation
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>