Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted DNA vaccine may reverse autoimmune disease

11.08.2003


Stanford University Medical Center researchers have developed a way to tailor therapies to combat the specific inappropriate responses of autoimmune diseases in mice. The researchers also have shown that their technique can provide information needed to predict a disease’s progression. Eventually, their work may provide a way to reverse the course of such autoimmune diseases in humans as multiple sclerosis, rheumatoid arthritis and type-1 diabetes by first identifying the immune system culprits gone awry and then creating customized therapies for individual patients.



Researchers Bill Robinson, P. J. Utz and Lawrence Steinman published results last year showing how microarrays - glass slides spotted with minute amounts of the proteins against which the body may be reacting - can provide a profile of the antibodies’ targets. Their current work, which appears in the September issue of Nature Biotechnology, takes the technology a step further and shows that the pattern of antibody activation can be used to predict and treat animals suffering from a disease resembling M.S.

"Ultimately, we think the array can be used to guide patient-specific therapy," said Robinson, MD, PhD, assistant professor of medicine (immunology and rheumatology) and lead author of the study. For example, a blood sample from a patient thought to have M.S. could be profiled using the array to help identify whether the person is likely to progress to full-blown disease and whether the individual would benefit from therapy. The information obtained in the profile could then be used to personalize therapies.


The team, which included former Stanford researcher Hideki Garren, MD, PhD, showed that this strategy works in a mouse model of M.S. called experimental autoimmune encephalomyletis, or EAE. In both conditions, the immune system launches an attack against the myelin sheath, the fatty cells that insulate neurons from electricity and ensure the speedy transmission of nerve impulses. Neurons that have patches of myelin destroyed by M.S. or EAE short-circuit and can lead to a variety of neurological disorders, depending on the part of the brain affected.

"Looking at one M.S. marker at a time had previously not been terribly informative," said Robinson. "We thought that looking at thousands at once would be more fruitful." Thanks to a dozen or so labs around the world that shared their protein samples, the group rapidly produced a comprehensive array that covered hundreds of the myelin sheath proteins.

When they analyzed serum samples from EAE mice using the array, they found that each mouse had a unique pattern of reactivity. Based on their antibody profiles, mice whose immune systems were attacking more elements on the myelin sheath progressed to a more severe disease, while mice whose immune systems made more restricted responses did not progress and had fewer flare-ups. The group then designed a treatment to reverse the progression of the disease, treating mice that had already suffered an initial attack of paralysis.

Autoimmune responses are thought to develop when antibodies attack many different proteins in the organ being targeted, so Robinson and his colleagues wanted to find a therapy that specifically knocked out as many of the harmful responses as possible while leaving the rest of the immune system functional. To do so, they took advantage of a well-known but poorly understood process known as tolerization. In this process, the immune system is coaxed to tolerate an offending protein after injection of that same protein or pieces of it. Utz, MD, assistant professor of medicine (immunology and rheumatology), likens the process to allergy shots: the agent causing the allergic reaction is injected into muscle in order for the body to learn to ignore it.

Using the microarray information to guide them to the targets of the autoimmune response in the sickest mice, Garren and Steinman, MD, professor of neurology and neurological sciences, built on previous studies in Steinman’s lab to create a tolerizing vaccine that delivered four of the targeted proteins. To make an effective delivery vehicle, they put the DNA sequence that encoded the proteins into a circular piece of DNA called a plasmid, creating a DNA vaccine. When these engineered plasmids were injected, they produced the desired proteins and a programmed tolerization process began.

One advantage of DNA vaccines over other methods of tolerization, Garren noted, is that it allows for multiple autoimmune targets to be tolerized simultaneously rather than one at a time. "We found that this approach broadly turns off autoimmune responses," said Robinson. "Clinically, the animals do better when receiving the vaccine. When we use our arrays to monitor the response, we see broad reductions in the progression of the disease."

The ability to profile which antibodies have gone awry has a number of implications for diagnosis and treatment of people with autoimmune diseases. "When we see these patients, we have no idea what is going to happen 10 years from now," Utz said. "It would be great to have a test that would let us know if a person is going to have a horrible outcome so we could treat aggressively, or if a person is going to be fine, or if a person is going to have a bad response to a therapy so we could avoid that."

Led by Steinman, the team plans to use their findings to help people with autoimmune diseases. To reach this goal, they co-founded Bayhill Therapeutics; Garren directs the scientific efforts of the company.

Using DNA vaccines to specifically turn off the immune system is a completely new way to immunize, said Steinman. "This is the opposite of what we try to do with traditional vaccines against bacteria and viruses, where we want to stimulate the immune system to attack the microbe," he added.

This study was funded by a number of sources, including funds from a $14.7 million contract from the National Institutes of Health, the Baxter Foundation and the Arthritis Foundation.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>