Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Step for Designer Plants that could clean up Heavy Metals

11.08.2003


Researchers at the University of California, San Diego have demonstrated that a chemical that permits plants to detoxify heavy metals can be transported from the roots to stems and leaves, a finding that brings the possibility of using plants to clean up soil contaminated with toxic metals such as lead, arsenic and cadmium one step closer to reality.


Images of plants without (left) and with (right) the gene to produce phytochelatins in roots exposed to cadmium.
Photo Credit Ji-Ming Gong, UCSD.



A paper detailing the discovery appears this week in an advance online publication of the Proceedings of the National Academy of Sciences and will appear in the journal’s August 19th issue.

Bioremediation, the process of using organisms to restore toxic or damaged areas, could substantially reduce the costs of cleaning up the nation’s Superfund sites, estimated to require more than $700-billion. Of the top six pollutants at U.S. Superfund sites, four are heavy metals-lead, arsenic, mercury and cadmium-that may be able to be extracted with the help of plants.


“There are about four important steps in developing plants for bioremediation,” says Julian Schroeder, a professor of biology at UCSD who headed the study. “The roots of the plant need to secrete a substance that makes the metals in the soil soluble, making it possible for the plant to take them up. The plant needs to detoxify the metals once it takes them up, and the metals need to be transported to the stems and leaves of the plant, and stored there. We have found that phytochelatins, chemicals produced by an enzyme for which our lab co-discovered the gene four years ago, unexpectedly function in the root to leaf transfer of metals.”

Prior to his team’s recent discovery, plant biologists presumed that phytochelatins only acted within individual plant cells, surrounding and binding to, or “chelating” heavy metal ions, forming a complex, which is then sequestered in vacuoles—large storage compartments within plant cells. Phytochelatins, in other words, were not known to travel significant distances within a plant.

If the phytochelatins remain in the roots and concentrate the heavy metals there, using plants for bioremediation is much less feasible. That’s because pulling the plants out of the ground with the roots attached is much more difficult than harvesting the parts above ground, and because the leaves and stems produce a lot of new biomass for metal accumulation.

For bioremediation to be practical, heavy metals would need to be transported from roots to shoots. Initially, the UCSD biologists thought it unlikely that phytochelatins could perform this function. “We thought maybe the phytochelatins would be trapped in roots,” says Ji-Ming Gong, a postdoctoral fellow in Schroeder’s lab and the first author on the paper.

To find out, Schroeder’s group used mutant plants that do not make their own phytochelatins. Although phytochelatins are found in most plants, they used Arabidopsis, a relative of the mustard plant, commonly used by plant biologists because of its well characterized genetics and readily available mutant varieties. The researchers took a mutant variety of Arabidopsis, which lacks the genes to synthesize phytochelatins, and genetically modified the mutant plants, targeting the gene for the enzyme that synthesizes phytochelatins to the roots of the plant.

To their surprise, the phytochelatins, while only synthesized in the roots, were found in the leaves and stems as well. In addition, when the researchers exposed the roots of the genetically modified plants to cadmium, arsenate and mercury, the plants had restored resistance to these heavy metals. Furthermore, expression of the gene only in roots increased the accumulation of cadmium in leaves. This suggests that engineering plants with the gene to synthesize phytochelatins in roots could make plants contribute to bioremediation.

“We demonstrated that phytochelatins can be transported from roots to shoots and that phytochelatins have a key role in preventing cadmium over-accumulation in roots and enhancing long-distance cadmium transport to leaves,” says Schroeder.

Cleaning up a site contaminated with heavy metals usually requires extensive bulldozing to remove the affected soil. This is very costly, damaging to the environment and requires a disposal site for the contaminated soil. Plants that can take up and store heavy metals could be a practical and relatively cost effective way of cleaning up contaminated sites. Plants could be grown, harvested and then incinerated to concentrate the heavy metals. Depending on the level of contamination, it might take multiple seasons of growing, harvesting and incinerating the plants to get the concentration of heavy metals in the soil to a safe range.

At present, the researchers concede that they do not understand the mechanism by which phytochelatins are transported from the roots to the shoots. But by better understanding how this occurs, it might be possible to optimize accumulation of heavy metals.

However, as a cautionary note, Schroeder points out, “Over-expressing this gene probably wouldn’t be enough to make plants useful for bioremediation. You would likely need to manipulate other genes in the heavy metal detoxification gene pathway.”

David Lee, a postdoctoral fellow in Schroeder’s lab also contributed to the discovery, which was supported by the National Institute on Environmental Health Sciences Superfund and National Science Foundation.

Contact: Sherry Seethaler, sseethaler@ucsd.edu

Sherry Seethaler | EurekAlert!
Further information:
http://ucsdnews.ucsd.edu

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>