Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists demonstrate new method for discovering cancer gene function

08.08.2003


Using a new approach for dissecting the complicated interactions among many genes, scientists at Dana-Farber Cancer Institute have discovered how a common cancer gene works in tandem with another gene to spur the unchecked growth of cells. The researchers say the technique was so useful in solving a longstanding puzzle that it may expedite the discovery of other such gene interactions that lead to cancer, and could accelerate the development of new cancer drugs.



The report in the Aug. 8 issue of Cell describes how the method was used in identifying what additional genes are affected by the common oncogene, cyclin D1, when it makes too much of its normal protein. By combining two types of data and applying a powerful statistical tool, the researchers pinpointed an unsuspected gene, C/EBP-beta, as a key mediator of cyclin D1 action.

Justin Lamb, PhD, a molecular biologist at Dana-Farber and lead author of the report, said the previous experimental efforts had failed to identify genetic accomplices of cyclin D1 in triggering cancer. "We didn’t know what cyclin D1 was interacting with," said Lamb.


Sridhar Ramaswamy, MD, second author of the paper and the developer of a human tumor database used in the experiment, said that even when similar cancer gene interactions had been discovered in the laboratory, "the open question has been whether what is found in the test tube is what really happens in human tumors. The patterns of gene expression we found in human tumors corroborated our in vitro finding, and I think that the paper represents a proof of concept of the approach."

The research was carried out in the laboratory of Mark E. Ewen, PhD, senior author of the paper.

Cancer is now viewed as a set of diseases fundamentally caused by mutations in genes that normally regulate all aspects of cellular function. Dozens of mutated oncogenes are known: some overproduce a growth signal to produce runaway cell division, while others fail to exert their normal check on excessive growth.

Oncogenes, however, don’t act alone. Their aberrant signals are relayed through other genes that interact in complex cascades, akin to a bucket brigade used to fight a fire. Lab procedures used to sort out which genes (actually, the proteins they produce) connect with each other rely on cancer cells in culture. This is not necessarily comparable to cells from a human patient. These studies are also time-consuming and require highly skilled scientists and technicians.

Lamb sought a way to combine, and perhaps shorten, this molecular biology approach with another strategy – one which would make use of data from the Global Cancer Map, a database established by Ramaswamy of information from hundreds of samples of human tumors and normal tissue.

For one arm of the experiment, the researchers artificially overexpressed cyclin D1 in human breast cancer cells in a test tube culture. They collected the genetic output of those cells, in the form of the RNA "messages" made by the thousands of genes in the cancer cells. The levels of some of these messages would have been altered by the action of the overexpressed cyclin D1 gene. To identify those messages, and the genes that produced them, the scientists placed RNA from the cancer cells on gene chips, or microarrays, which measure the activity of thousands of genes at once.

The gene chips identified 21 genes that were spurred into high gear by cyclin D1, making them prime suspects for being "downstream targets" of cyclin D1 overexpression. The scientists could then compare this 21 gene "expression signature" with gene activity in actual human tumors containing an overactive cyclin D1 gene. "The question was, could we find that same set of genes in human tumor samples," said Lamb. "If so, we would know if they were relevant in human cancer."

The activity of different genes in 190 human tumor samples was already profiled in the Global Cancer Map, and, using a statistical tool called the Kolmogorov-Smirnov metric, the scientists showed that the 21 genes identified by the gene chips correlated closely with human tumors having high expression levels of cyclin D1.

Finally, the scientists used the Kolmogorov-Smirnov tool again, this time to sort among the 16,000 different genes in tumors in the cancer map database, ranking each one of the 16,000 by its similarity in expression pattern to those in the 21-gene expression signature discovered in the laboratory cancer cells. The process can be likened to the results of an Internet search engine that ranks each "hit" by how closely it matches the keywords in the search.

It was this "data-mining" process that turned up the C/EBP-beta gene, which makes a protein known as a transcription factor, as a frequent co-conspirator with the genes in the cyclin D1 expression signature. The data strongly suggest, say the scientists, that the C/EBP-beta is involved in regulating genes affected by cyclin D1 overexpression, and is therefore likely a principal participant in a previously-unappreciated mechanism of cyclin D1 action.

"By inference," says Ramaswamy, "C/EBP-beta is required for cyclin D1 to exert its effect in human cancer." If so, the gene might be added to the list of targets in cancer cells that could be attacked with highly specific drugs.

Contact: Bill Schaller, william_schaller@dfci.harvard.edu

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.dana-farber.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>