Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-species mating may be evolutionarily important and lead to rapid change

08.08.2003


Like the snap of a clothespin, the sudden mixing of closely related species may occasionally provide the energy to impel rapid evolutionary change, according to a new report by researchers from Indiana University Bloomington and three other institutions. Their paper was made available online by Science magazine´s "Science Express" service.



A study of sunflower species that began 15 years ago shows that the sudden mixing and matching of different species´ genes can create genetic super-combinations that are considerably more advantageous to the survival and reproduction of their owners than the gene combinations their parents possess.

"This is the clearest evidence to date that hybridization can be evolutionarily important," said IUB biologist Loren Rieseberg, who led the research. "What´s more, we were able to demonstrate a possible mechanism for rapid evolutionary change by replicating the births of three unusual and ecologically divergent species within an extremely short period of time -- just a few generations."


The finding comes a month after IUB biologist Jeffrey Palmer and colleagues suggested in a letter to Nature that genetic exchange between completely unrelated species has occurred more often than experts previously thought.

There are many modern examples of hybridization in nature, some forced, some natural. Mules are bred by humans from horses and donkeys, are completely sterile, and represent an evolutionary dead-end. But there are other species-crossings that do just fine, such as offspring of the notoriously promiscuous oak tree species, which hybridize so often species-namers commonly joke about not being able to keep up.

Still, cross-species matings usually result in sickness or sterility, if the offspring get that far -- many naturally abort. Hybrid offspring that are fertile but sick or weak will not be able to compete with the purer offspring of either parent in passing on their genes to future generations. As a result, many evolutionary biologists have thought hybridization to be evolutionarily unimportant.

But Rieseberg´s new report suggests that even weak, hybrid offspring can acquire new, strong combinations of genes from their parents. As long as those offspring are just virile enough to transmit their useful genes to their own offspring, those genes may fight their way into populations of either or both parent species and become evolutionarily important. Hybridization has been used to great effect in the creation of successful crops and animal breeds, but many evolutionary biologists have resisted accepting hybridization´s importance in a world before the appearance of modern humans.

"We´re all aware hybridization and intensive cross-breeding has produced better corn and better cows," Rieseberg said. "Yet there´s been resistance in the evolutionary biology community to the notion that evolution might sometimes be facilitated by hybridization."

Rieseberg and his team compared the physical, physiological and genetic traits of several sunflower species. Two of the species, Helianthus annuus and H. petiolaris, are considered "parental," or more ancient. Another three species the scientists studied, H. anomalus, H. deserticola and H. paradoxus, are believed to have evolved somewhat recently, as hybrids of the two parental sunflower species, between 60,000 and 200,000 years ago. The three hybrid species are remarkable in being adapted to very extreme habitats: sand dunes, dry desert floor and salt marshes, respectively. The researchers also created their own hybrids of H. annuus and H. petiolaris.

The researchers found that their synthetic hybrids quickly acquired the traits necessary to colonize the extreme habitats of their naturally evolved hybrid counterparts, suggesting that potentially useful traits can be created quickly. Rieseberg and his team also found that the traits were largely the same as those produced by natural selection during the evolution of the natural hybrid species. Through cross-breeding, the researchers were able to simulate the birth of three new species and the large and dramatic evolutionary changes that accompanied their origins.

"It´s often very easy to explain small differences we see within a species, but harder to account for larger differences between species that require changes in multiple traits or genes," Rieseberg said. "We have provided an explanation for how some of these more difficult changes might happen. Dramatic evolutionary changes are most likely to occur when parental species are very different from each other, creating a much broader array of gene and trait combinations."

Researchers at La Laboratoire de Biologie Moleculaire et Phytochimie (Villeurbanne, France), the University of Georgia and Kent State University also contributed to the report. It was funded by grants from the National Institutes of Health and the National Science Foundation.

David Bricker | Indiana Universty
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>