Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-species mating may be evolutionarily important and lead to rapid change

08.08.2003


Like the snap of a clothespin, the sudden mixing of closely related species may occasionally provide the energy to impel rapid evolutionary change, according to a new report by researchers from Indiana University Bloomington and three other institutions. Their paper was made available online by Science magazine´s "Science Express" service.



A study of sunflower species that began 15 years ago shows that the sudden mixing and matching of different species´ genes can create genetic super-combinations that are considerably more advantageous to the survival and reproduction of their owners than the gene combinations their parents possess.

"This is the clearest evidence to date that hybridization can be evolutionarily important," said IUB biologist Loren Rieseberg, who led the research. "What´s more, we were able to demonstrate a possible mechanism for rapid evolutionary change by replicating the births of three unusual and ecologically divergent species within an extremely short period of time -- just a few generations."


The finding comes a month after IUB biologist Jeffrey Palmer and colleagues suggested in a letter to Nature that genetic exchange between completely unrelated species has occurred more often than experts previously thought.

There are many modern examples of hybridization in nature, some forced, some natural. Mules are bred by humans from horses and donkeys, are completely sterile, and represent an evolutionary dead-end. But there are other species-crossings that do just fine, such as offspring of the notoriously promiscuous oak tree species, which hybridize so often species-namers commonly joke about not being able to keep up.

Still, cross-species matings usually result in sickness or sterility, if the offspring get that far -- many naturally abort. Hybrid offspring that are fertile but sick or weak will not be able to compete with the purer offspring of either parent in passing on their genes to future generations. As a result, many evolutionary biologists have thought hybridization to be evolutionarily unimportant.

But Rieseberg´s new report suggests that even weak, hybrid offspring can acquire new, strong combinations of genes from their parents. As long as those offspring are just virile enough to transmit their useful genes to their own offspring, those genes may fight their way into populations of either or both parent species and become evolutionarily important. Hybridization has been used to great effect in the creation of successful crops and animal breeds, but many evolutionary biologists have resisted accepting hybridization´s importance in a world before the appearance of modern humans.

"We´re all aware hybridization and intensive cross-breeding has produced better corn and better cows," Rieseberg said. "Yet there´s been resistance in the evolutionary biology community to the notion that evolution might sometimes be facilitated by hybridization."

Rieseberg and his team compared the physical, physiological and genetic traits of several sunflower species. Two of the species, Helianthus annuus and H. petiolaris, are considered "parental," or more ancient. Another three species the scientists studied, H. anomalus, H. deserticola and H. paradoxus, are believed to have evolved somewhat recently, as hybrids of the two parental sunflower species, between 60,000 and 200,000 years ago. The three hybrid species are remarkable in being adapted to very extreme habitats: sand dunes, dry desert floor and salt marshes, respectively. The researchers also created their own hybrids of H. annuus and H. petiolaris.

The researchers found that their synthetic hybrids quickly acquired the traits necessary to colonize the extreme habitats of their naturally evolved hybrid counterparts, suggesting that potentially useful traits can be created quickly. Rieseberg and his team also found that the traits were largely the same as those produced by natural selection during the evolution of the natural hybrid species. Through cross-breeding, the researchers were able to simulate the birth of three new species and the large and dramatic evolutionary changes that accompanied their origins.

"It´s often very easy to explain small differences we see within a species, but harder to account for larger differences between species that require changes in multiple traits or genes," Rieseberg said. "We have provided an explanation for how some of these more difficult changes might happen. Dramatic evolutionary changes are most likely to occur when parental species are very different from each other, creating a much broader array of gene and trait combinations."

Researchers at La Laboratoire de Biologie Moleculaire et Phytochimie (Villeurbanne, France), the University of Georgia and Kent State University also contributed to the report. It was funded by grants from the National Institutes of Health and the National Science Foundation.

David Bricker | Indiana Universty
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>