Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Name that tune: How birds learn to recognize song

07.08.2003


European starling. Photo by Daniel Baleckaitis.


Researchers in a University of Chicago lab are peering inside the minds of European starlings to find out how they recognize songs and in the process are providing insights into how the brain learns, recognizes and remembers complex sounds at the cellular level. In a study published in the Aug. 7, 2003, issue of Nature, the researchers show how songs that birds have learned to recognize trigger responses both in individual neurons and in populations of neurons in the bird’s brain.

"We found that cells in a part of the brain are altered dramatically by the learning process," said Daniel Margoliash, Ph.D., professor of organismal biology and anatomy and of psychology, and co-author of the paper. "As birds learn to recognize certain songs, the cells in this area become sensitive to particular sound patterns or auditory objects that occur in the learned songs, while cells never show such sensitivity to patterns in unfamiliar songs. Specific cells in the brain become ‘tuned’ to what the bird is learning."

How the brain perceives and interprets stimuli from the external world are fundamental questions in neuroscience. There are many types of memory systems in the brain. Memories of words, sounds of voices or patterns of music are important components of human daily experience and are essential for normal communication, yet "we know little about how such memories are formed in the brain and how they are retrieved," Margoliash said.



Bird songs have captured the interest of humans for ages. "Birders can often recognize many species of birds by only their songs," he said.

For the birds themselves, however, song recognition is no casual business. The ability to match a singer to a song, often down to the level of an individual bird, can mean the difference between "a day spent wrestling through the thicket and one spent enjoying a sun-soaked perch, or the missed chance at mating with the healthiest partner around."

Lead investigator of the study Timothy Gentner, Ph.D., a research associate in the department of organismal biology and anatomy, has tapped into the recognition abilities of songbirds by training birds in the lab to recognize songs. The birds were taught to press different buttons on a small metal panel depending on the song they heard. The researchers rewarded correct responses with food and turned the lights off to convey an incorrect response.

Gentner’s earlier research has shown that European starlings learn to recognize different songs by the individual pieces that comprise each song.

"If you listen closely to a singing starling, you’ll hear that the song is really composed of much shorter sounds," Gentner said. "We call these sounds ‘motifs,’ and to produce a song, the bird will sing the same motif a few times, then switch to a new repeated motif, and then another, as long as he can keep it going. When male starlings sing, they might use only half of the motifs they know and then mix up the motifs when they sing another song."

Given this highly variable motif structure, when other starlings are learning which songs belong to which individuals, they do it by concentrating on the motifs, he said. "Even one or two familiar motifs in an otherwise unfamiliar song is enough to trigger recognition."

To examine the neural mechanisms associated with auditory memory, Gentner and Margoliash measured the electrical impulses from single nerve cells in the auditory area of the bird’s brain known as cmHV -- an area analogous to the higher-order, secondary auditory cortex in humans -- in starlings trained to recognize several songs.

The researchers recorded the response of each neuron to songs the birds had learned to recognize, to unfamiliar songs the birds had never heard before and to synthetic sounds such as white noise. As a population, the cells responded much more strongly to the songs the birds had learned to recognize than to any of the other sounds. Individually, a majority of the cells responded to only one song, and almost all (93 percent) of these cells responded to one of the songs the bird had learned to recognize. After examining the data even more closely, they found that many of these cells only responded to specific motifs in a familiar song.

"The song motifs that drive these cells so strongly are the same components of sounds that control recognition behavior in the birds," Gentner said. "It appears that we are seeing the memory traces for recognition of these complex acoustic patterns. Rather than representing all motifs equally well at any time, we find that experience modifies the brain to highlight those motifs that are the most important to the bird at that time."

"[These motifs] are the books that make up the starlings’ library of memories, and we’re learning how the starling represents those books in his brain," Margoliash said.

"Memories are not permanent," he said. "Do we lose memories because of disuse or because they are crowded out by other memories? Our research shows that the context in which you learn a sound affects how it is memorized. What are the brain mechanisms that control this process of how a memory is laid down?"

Margoliash and Gentner believe these are questions that can be answered in future research with starlings. Neuroscientists, and children learning language, are interested in the answers.

The University of Chicago Medical Center
Office of Public Affairs
5841 South Maryland Avenue -- MC6063
Chicago, IL 60637
Phone 773-702-6241 Fax 773-702-3171

| University of Chicago Hospitals
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>