Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation found for eye disease that mimics macular degeneration

05.08.2003


University of Michigan Kellogg Eye Center scientists have been studying a family whose members have an eye disease that looks like age-related macular degeneration (AMD), but that has a rarer pattern of inheritance that results in an exceptionally high incidence of the disease among family members in the study.



In the August issue of Investigative Ophthalmology & Visual Science (IOVS), Kellogg scientist Radha Ayyagari, Ph.D., and her collaborators from the U-M and other institutions identify the gene associated with this unusual macular disease. They report on the Tyr141Cys mutation in a gene called RDS.

According to Ayyagari, the marked similarity between AMD and the AMD-like disease will help researchers learn more about the molecular basis of AMD. The findings could have even greater significance because Ayyagari and her colleagues suspect that some individuals with AMD may also harbor the RDS mutation.


AMD is a progressive disease affecting the macula, the area of the retina responsible for central vision that enables us to drive, read, and identify faces. It affects about 1.65 million individuals in this country each year; the first symptoms tend to appear at age 60 or older.

Ayyagari’s group discovered the mutation by studying members of five generations of a large family, known to researchers as SUNY901. The family has a high incidence of a macular disease that resembles AMD, begins at age 50 or older, and has both wet and dry forms, much like AMD.

But in contrast to AMD, it has an autosomal dominant mode of inheritance, which means that the disease can be passed to a child by either parent and that the child of an affected parent has about a 50 percent chance of inheriting the disease.

The family members who are affected by the disease may have symptoms with varying degrees of severity, but the condition frequently results in permanent loss of central vision. Co-author Shahrokh C. Khani, M.D., a U-M-trained ophthalmologist now at State University of New York at Buffalo, examined many members of the SUNY901 family.

"From the clinician’s point of view, the eye disorder in this family looks just like AMD," says Khani. "It is very similar in clinical behavior, age of onset, and response to treatment; it appears be a kind of mirror of AMD."

According to Ayyagari, an assistant research scientist in the Department of Ophthalmology and Visual Sciences at the U-M Medical School, the rate at which the SUNY901 family inherited the mutation is one of the most dramatic findings of the research.

"Although AMD has a strong genetic component, we do not see the strong patterns of inheritance we have observed in members of this family," observes Ayyagari. For example, in the fourth generation, at least 18 of the 23 members inherited the mutation from a carrier or affected parent. The odds of encountering the mutation versus the unaffected gene is closer to three-to-one, rather than the expected one-to-one ratio.

When researchers discovered that the same mutation occurred in a smaller family (BCM-AD033), they realized, after further analysis, that this family and the SUNY901 family must have a common ancestor. Researchers had already studied the genealogy of the larger family and traced its members to a single ancestor who emigrated from Germany to North America. Ayyagari adds that RDS has been screened extensively in populations worldwide; the only two families known to have the rare mutation are the two families described in the paper.

Khani observes that the detailed family history of the SUNY901 family presented genetic researchers with an unusual opportunity.

"When you can study a family with such a well-preserved genealogy, it is easier to get to the root of the disease," he says. "Most families find it difficult to identify members beyond a first cousin. In this family we think we can identify the first family members to have developed the disease, in the late 1700s."

Scientists want to understand how the mutation in RDS interferes with the healthy functioning of the eye. They believe that the mutation disrupts the normal structure and function of the RDS protein. As scientists gain more understanding of these processes, they will be able to develop therapies and treatments that counteract or circumvent the effects of the mutations.

In addition to Khani and Ayyagari, coauthors of the paper are: Athanasios J. Karoukis, Rajesh Ambasudhan and Tracy Burch of Kellogg; Joyce E. Young and Richard Stockton of SUNY Buffalo; Richard Alan Lewis of Baylor College of Medicine; Lori S. Sullivan and Stephen P. Daiger of the University of Texas Health Science Center; and Elias Reichel of the New England Eye Center at Tufts University.

Kara Gavin | EurekAlert!
Further information:
http://www.iovs.org
http://www.kellogg.umich.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>