Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation found for eye disease that mimics macular degeneration

05.08.2003


University of Michigan Kellogg Eye Center scientists have been studying a family whose members have an eye disease that looks like age-related macular degeneration (AMD), but that has a rarer pattern of inheritance that results in an exceptionally high incidence of the disease among family members in the study.



In the August issue of Investigative Ophthalmology & Visual Science (IOVS), Kellogg scientist Radha Ayyagari, Ph.D., and her collaborators from the U-M and other institutions identify the gene associated with this unusual macular disease. They report on the Tyr141Cys mutation in a gene called RDS.

According to Ayyagari, the marked similarity between AMD and the AMD-like disease will help researchers learn more about the molecular basis of AMD. The findings could have even greater significance because Ayyagari and her colleagues suspect that some individuals with AMD may also harbor the RDS mutation.


AMD is a progressive disease affecting the macula, the area of the retina responsible for central vision that enables us to drive, read, and identify faces. It affects about 1.65 million individuals in this country each year; the first symptoms tend to appear at age 60 or older.

Ayyagari’s group discovered the mutation by studying members of five generations of a large family, known to researchers as SUNY901. The family has a high incidence of a macular disease that resembles AMD, begins at age 50 or older, and has both wet and dry forms, much like AMD.

But in contrast to AMD, it has an autosomal dominant mode of inheritance, which means that the disease can be passed to a child by either parent and that the child of an affected parent has about a 50 percent chance of inheriting the disease.

The family members who are affected by the disease may have symptoms with varying degrees of severity, but the condition frequently results in permanent loss of central vision. Co-author Shahrokh C. Khani, M.D., a U-M-trained ophthalmologist now at State University of New York at Buffalo, examined many members of the SUNY901 family.

"From the clinician’s point of view, the eye disorder in this family looks just like AMD," says Khani. "It is very similar in clinical behavior, age of onset, and response to treatment; it appears be a kind of mirror of AMD."

According to Ayyagari, an assistant research scientist in the Department of Ophthalmology and Visual Sciences at the U-M Medical School, the rate at which the SUNY901 family inherited the mutation is one of the most dramatic findings of the research.

"Although AMD has a strong genetic component, we do not see the strong patterns of inheritance we have observed in members of this family," observes Ayyagari. For example, in the fourth generation, at least 18 of the 23 members inherited the mutation from a carrier or affected parent. The odds of encountering the mutation versus the unaffected gene is closer to three-to-one, rather than the expected one-to-one ratio.

When researchers discovered that the same mutation occurred in a smaller family (BCM-AD033), they realized, after further analysis, that this family and the SUNY901 family must have a common ancestor. Researchers had already studied the genealogy of the larger family and traced its members to a single ancestor who emigrated from Germany to North America. Ayyagari adds that RDS has been screened extensively in populations worldwide; the only two families known to have the rare mutation are the two families described in the paper.

Khani observes that the detailed family history of the SUNY901 family presented genetic researchers with an unusual opportunity.

"When you can study a family with such a well-preserved genealogy, it is easier to get to the root of the disease," he says. "Most families find it difficult to identify members beyond a first cousin. In this family we think we can identify the first family members to have developed the disease, in the late 1700s."

Scientists want to understand how the mutation in RDS interferes with the healthy functioning of the eye. They believe that the mutation disrupts the normal structure and function of the RDS protein. As scientists gain more understanding of these processes, they will be able to develop therapies and treatments that counteract or circumvent the effects of the mutations.

In addition to Khani and Ayyagari, coauthors of the paper are: Athanasios J. Karoukis, Rajesh Ambasudhan and Tracy Burch of Kellogg; Joyce E. Young and Richard Stockton of SUNY Buffalo; Richard Alan Lewis of Baylor College of Medicine; Lori S. Sullivan and Stephen P. Daiger of the University of Texas Health Science Center; and Elias Reichel of the New England Eye Center at Tufts University.

Kara Gavin | EurekAlert!
Further information:
http://www.iovs.org
http://www.kellogg.umich.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>