Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries made about cellular reaction processes from ancient life

05.08.2003


How did life begin? What chemical combination launched the first organism with self-contained metabolism? And then what happened? Researchers in Robert H. White’s group at Virginia Tech are tracing the family tree of life on earth by tracing the biochemical mechanisms within the cell - specifically those that are used in the formation of peptide bonds.

The building blocks of enzymatic and functional structures in living organisms are proteins created by linking amino acids into peptides (sub units of proteins). The mechanisms for creating peptides in proteins and some coenzymes are the clues that White and colleagues are following. "Enzymes that mechanistically do the same thing are included into a family, and we believe that there is an ancestral enzyme for this family," says David Graham, who was an NSF postdoctoral fellow in microbial biology at Virginia Tech.

In their attempt to reconstruct biochemical history, White’s group has discovered two enzymes in Methanococcus jannaschii that may predate the cell’s use of ribosome to build proteins. Their research will be reported in the Proceedings of the National Academy of Science (PNAS) by Hong Li, a post doc at Virginia Tech; Huimin Xu, a Virginia Tech technician, Graham, now at the University of Texas at Austin, and White, professor of biochemistry. The article (#3391), "Glutathione synthetase homologs encode a-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses," will be published in the PNAS online Early Edition during the week of Monday, Aug. 4 – Friday, Aug. 8, 2003.



"We found two enzymes, MptN and CofF, which are descendants of the ATP-grasp superfamily," says White.

The ATP superfamily is a group of enzymes that use ATP -- the nucleotide energy source for the cell. "ATP-grasp" refers to a shared nucleotide-binding method. Every self-sustaining, living organism has ATP superfamily enzymes. "We are interested in determining the functions of genes and how coenzymes are made," says Graham.

The two newly discovered genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative a-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity.

"Most people learn in high school biology about ribosomes’ role in making protein, but there is a whole other world without ribosomes - interesting predecessors to how peptides were formed before ribosomes," says Graham.

White’s group studies archaea, one of the earliest forms of life -- from when the earth was hot and soupy. Archaea are now found in such places as ocean vents and camel guts. "We are looking at present metabolism to extrapolate to ancient life," says White.

"MptN and CofF both produce alpha glutamate bonds (the same as in proteins), so we infer that an ancestor protein was also making alpha glutamate bonds," says Graham. "The mechanism is the same, but the substrate that the glutamate is attaching to is really different."

The compounds range from a protein to a small molecule, says White.

"We have defined a family that shares the same ability to add alpha glutamate," says Graham. "But we don’t know why, yet."

Li also discovered another enzyme, CofE, which may predate ribosome. It makes gamma-linked glutamate bonds. Her article, "CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii" is forthcoming in the journal Biochemistry.

"Our initial interest in how F420 is made led to discovery of one new enzyme in sarcinpterin and two enzymes in F420 that are mechanistically related. They all have glutamate in their chemical structure and share a common reaction method for adding this amino acid," says White. "This work has shown how changes in members of a superfamily of enzymes can lead to a wider diversity in their function - in this case the biosynthesis of coenzymes."

After millions of years, the genealogy of life is more like a spider web, White says. "You never know where you will end up, which makes it exciting. We are working on one spoke of the spider web and want to go back to the center.

"In the meantime, we have expanded our knowledge of gene function, which is a central goal of our work."

The reviewers of the PNAS article commented that the research increased the understanding of the ATP superfamily and appreciated the elucidation of the relationships between two members in terms of coenzyme biosynthesis.

Li received her Ph.D. in biochemistry from Virginia Tech in May 2002 and plans to continue her research.

Contact: Dr. Robert White, Tel. +1-540-231-6605, Email: rhwhite@vt.edu

Dr. Robert H. White | EurekAlert!
Further information:
http://www.technews.vt.edu

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>