Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries made about cellular reaction processes from ancient life

05.08.2003


How did life begin? What chemical combination launched the first organism with self-contained metabolism? And then what happened? Researchers in Robert H. White’s group at Virginia Tech are tracing the family tree of life on earth by tracing the biochemical mechanisms within the cell - specifically those that are used in the formation of peptide bonds.

The building blocks of enzymatic and functional structures in living organisms are proteins created by linking amino acids into peptides (sub units of proteins). The mechanisms for creating peptides in proteins and some coenzymes are the clues that White and colleagues are following. "Enzymes that mechanistically do the same thing are included into a family, and we believe that there is an ancestral enzyme for this family," says David Graham, who was an NSF postdoctoral fellow in microbial biology at Virginia Tech.

In their attempt to reconstruct biochemical history, White’s group has discovered two enzymes in Methanococcus jannaschii that may predate the cell’s use of ribosome to build proteins. Their research will be reported in the Proceedings of the National Academy of Science (PNAS) by Hong Li, a post doc at Virginia Tech; Huimin Xu, a Virginia Tech technician, Graham, now at the University of Texas at Austin, and White, professor of biochemistry. The article (#3391), "Glutathione synthetase homologs encode a-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses," will be published in the PNAS online Early Edition during the week of Monday, Aug. 4 – Friday, Aug. 8, 2003.



"We found two enzymes, MptN and CofF, which are descendants of the ATP-grasp superfamily," says White.

The ATP superfamily is a group of enzymes that use ATP -- the nucleotide energy source for the cell. "ATP-grasp" refers to a shared nucleotide-binding method. Every self-sustaining, living organism has ATP superfamily enzymes. "We are interested in determining the functions of genes and how coenzymes are made," says Graham.

The two newly discovered genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative a-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity.

"Most people learn in high school biology about ribosomes’ role in making protein, but there is a whole other world without ribosomes - interesting predecessors to how peptides were formed before ribosomes," says Graham.

White’s group studies archaea, one of the earliest forms of life -- from when the earth was hot and soupy. Archaea are now found in such places as ocean vents and camel guts. "We are looking at present metabolism to extrapolate to ancient life," says White.

"MptN and CofF both produce alpha glutamate bonds (the same as in proteins), so we infer that an ancestor protein was also making alpha glutamate bonds," says Graham. "The mechanism is the same, but the substrate that the glutamate is attaching to is really different."

The compounds range from a protein to a small molecule, says White.

"We have defined a family that shares the same ability to add alpha glutamate," says Graham. "But we don’t know why, yet."

Li also discovered another enzyme, CofE, which may predate ribosome. It makes gamma-linked glutamate bonds. Her article, "CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii" is forthcoming in the journal Biochemistry.

"Our initial interest in how F420 is made led to discovery of one new enzyme in sarcinpterin and two enzymes in F420 that are mechanistically related. They all have glutamate in their chemical structure and share a common reaction method for adding this amino acid," says White. "This work has shown how changes in members of a superfamily of enzymes can lead to a wider diversity in their function - in this case the biosynthesis of coenzymes."

After millions of years, the genealogy of life is more like a spider web, White says. "You never know where you will end up, which makes it exciting. We are working on one spoke of the spider web and want to go back to the center.

"In the meantime, we have expanded our knowledge of gene function, which is a central goal of our work."

The reviewers of the PNAS article commented that the research increased the understanding of the ATP superfamily and appreciated the elucidation of the relationships between two members in terms of coenzyme biosynthesis.

Li received her Ph.D. in biochemistry from Virginia Tech in May 2002 and plans to continue her research.

Contact: Dr. Robert White, Tel. +1-540-231-6605, Email: rhwhite@vt.edu

Dr. Robert H. White | EurekAlert!
Further information:
http://www.technews.vt.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>