Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discoveries made about cellular reaction processes from ancient life


How did life begin? What chemical combination launched the first organism with self-contained metabolism? And then what happened? Researchers in Robert H. White’s group at Virginia Tech are tracing the family tree of life on earth by tracing the biochemical mechanisms within the cell - specifically those that are used in the formation of peptide bonds.

The building blocks of enzymatic and functional structures in living organisms are proteins created by linking amino acids into peptides (sub units of proteins). The mechanisms for creating peptides in proteins and some coenzymes are the clues that White and colleagues are following. "Enzymes that mechanistically do the same thing are included into a family, and we believe that there is an ancestral enzyme for this family," says David Graham, who was an NSF postdoctoral fellow in microbial biology at Virginia Tech.

In their attempt to reconstruct biochemical history, White’s group has discovered two enzymes in Methanococcus jannaschii that may predate the cell’s use of ribosome to build proteins. Their research will be reported in the Proceedings of the National Academy of Science (PNAS) by Hong Li, a post doc at Virginia Tech; Huimin Xu, a Virginia Tech technician, Graham, now at the University of Texas at Austin, and White, professor of biochemistry. The article (#3391), "Glutathione synthetase homologs encode a-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses," will be published in the PNAS online Early Edition during the week of Monday, Aug. 4 – Friday, Aug. 8, 2003.

"We found two enzymes, MptN and CofF, which are descendants of the ATP-grasp superfamily," says White.

The ATP superfamily is a group of enzymes that use ATP -- the nucleotide energy source for the cell. "ATP-grasp" refers to a shared nucleotide-binding method. Every self-sustaining, living organism has ATP superfamily enzymes. "We are interested in determining the functions of genes and how coenzymes are made," says Graham.

The two newly discovered genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative a-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity.

"Most people learn in high school biology about ribosomes’ role in making protein, but there is a whole other world without ribosomes - interesting predecessors to how peptides were formed before ribosomes," says Graham.

White’s group studies archaea, one of the earliest forms of life -- from when the earth was hot and soupy. Archaea are now found in such places as ocean vents and camel guts. "We are looking at present metabolism to extrapolate to ancient life," says White.

"MptN and CofF both produce alpha glutamate bonds (the same as in proteins), so we infer that an ancestor protein was also making alpha glutamate bonds," says Graham. "The mechanism is the same, but the substrate that the glutamate is attaching to is really different."

The compounds range from a protein to a small molecule, says White.

"We have defined a family that shares the same ability to add alpha glutamate," says Graham. "But we don’t know why, yet."

Li also discovered another enzyme, CofE, which may predate ribosome. It makes gamma-linked glutamate bonds. Her article, "CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii" is forthcoming in the journal Biochemistry.

"Our initial interest in how F420 is made led to discovery of one new enzyme in sarcinpterin and two enzymes in F420 that are mechanistically related. They all have glutamate in their chemical structure and share a common reaction method for adding this amino acid," says White. "This work has shown how changes in members of a superfamily of enzymes can lead to a wider diversity in their function - in this case the biosynthesis of coenzymes."

After millions of years, the genealogy of life is more like a spider web, White says. "You never know where you will end up, which makes it exciting. We are working on one spoke of the spider web and want to go back to the center.

"In the meantime, we have expanded our knowledge of gene function, which is a central goal of our work."

The reviewers of the PNAS article commented that the research increased the understanding of the ATP superfamily and appreciated the elucidation of the relationships between two members in terms of coenzyme biosynthesis.

Li received her Ph.D. in biochemistry from Virginia Tech in May 2002 and plans to continue her research.

Contact: Dr. Robert White, Tel. +1-540-231-6605, Email:

Dr. Robert H. White | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>