Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jaws of clamworm are hardened by zinc


Scientists often look to nature for inspiration in the search for ways to make new materials. A new study of the clamworm, an intertidal creature, shows that it has jaws made partly of zinc, making them strong, stiff and tough –– fundamental properties by which all materials are evaluated.

The properties of the clamworm jaws are described in this week´s online publication of the Proceedings of the National Academies of Sciences (PNAS). The research began with questions by scientists at the University of California, Santa Barbara and the Argonne National Laboratory, and evolved into an international project involving scientists from Austria and Finland.

"Zinc zips together proteins in a way that hardens the material," said Galen D. Stucky, a materials chemist and professor in UCSB´s Department of Chemistry and Biochemistry. He noted that the study of how nature makes hard materials, their structure and function, may eventually yield information on how scientists can make lightweight, flexible materials ranging from more durable tires to protective coatings.

The scientists found that that this polychaete worm (a marine worm with bristle-tipped organs of locomotion) has the greatest amount of zinc concentrated toward the tip of its jaw, where it needs the most strength. In the PNAS article the authors compare this polychaete (scientifically named Nereis limbata) with another one described last year in a paper in Science.

That worm, Glycera dibranchiata, a cousin of the clamworm and commonly known as a bloodworm, has copper-containing fangs which inject venom into its live prey. This discovery was a surprise since copper has never been found in such concentration in an organism. The copper fangs of the bloodworm were found to have a resistance to abrasion that is comparable to that of a human tooth, and greater than the clamworm jaws with zinc. But since the clamworm is a scavenger, it doesn´t need quite as much strength as the bloodworm to catch its food.

Professor Herbert Waite, in UCSB´s Department of Molecular, Cellular and Developmental Biology who originated this research, said that he was intrigued by finding metals in the mouths of the worms. "Usually the healthy cells in our bodies have pathways to deal with the toxicity of these metals," said Waite. "When zinc and copper imbalances occur, serious pathological disorders result. In the case of the jaws, however, the metals are intentionally concentrated to serve a function, and this highlights the exotic nature of these structures."

He explained that it is usually axiomatic that if (in materials science) you want something hard, stiff and wear-resistant, it needs to have mineral in it – minerals are the best materials for making something stiff. In nature´s best cutting structure, vertebrate tooth enamel, the mineral content is 95 percent. Yet the clamworms do not use any mineral for hardening, thus revealing a new paradigm in nature and sparking new ideas for materials science.

"The jaws are much lighter than if they were calcified," said Waite. "If you want something lightweight then you reduce reliance on minerals. I´m not sure why, in their watery environment, the clamworms jaws need to be light." Yet the jaws are lightweight, wear-resistant biomaterials without mineral.

"It´s not that technology will copy verbatim what the worm does," said Waite. "But we are interested in knowing concepts of how organics interface with transition metals to produce functional material." Waite has studied the way that mussels attach to rocks. Their attachment threads are another example of the use of copper and zinc in nature. "Their biochemistry is very similar to both worms. It´s only natural that I would get into the jaws."

"A lot of science involved in exploring the relationship between metals and proteins is so interdisciplinary," he said. "A little lab like mine couldn´t hope to handle it independently. We pooled expertise in physics, inorganic chemistry, materials science and biology. UCSB is really good at interdisciplinary work."

For their study, the scientists also used labs outside of UCSB. For example, they used a nanoindentation device in the lab of Thomas Schöberl of the Austrian Academy of Sciences to test for mechanical properties -- flexibility, hardness and elasticity. Besides nanoindentation, a number of state-of-the-art methods were used to study the jaws, including x-ray scattering using a synchrotron at Argonne National Laboratory in Illinois.

The first author on the paper, Helga C. Lichtenegger of the Vienna University of Technology in Austria, came to UCSB to collaborate with Waite and Stucky on the research. Other authors include Henrik Birkedal of UCSB, Thomas Schöberl of the Austrian Academy of Sciences, Jann T. Ruokolainen of the Helsinki University of Technology in Finland, and Julie O. Cross and Steve M. Heald from Argonne National Laboratory.

Gail Gallessich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>