Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jaws of clamworm are hardened by zinc

04.08.2003


Scientists often look to nature for inspiration in the search for ways to make new materials. A new study of the clamworm, an intertidal creature, shows that it has jaws made partly of zinc, making them strong, stiff and tough –– fundamental properties by which all materials are evaluated.



The properties of the clamworm jaws are described in this week´s online publication of the Proceedings of the National Academies of Sciences (PNAS). The research began with questions by scientists at the University of California, Santa Barbara and the Argonne National Laboratory, and evolved into an international project involving scientists from Austria and Finland.

"Zinc zips together proteins in a way that hardens the material," said Galen D. Stucky, a materials chemist and professor in UCSB´s Department of Chemistry and Biochemistry. He noted that the study of how nature makes hard materials, their structure and function, may eventually yield information on how scientists can make lightweight, flexible materials ranging from more durable tires to protective coatings.


The scientists found that that this polychaete worm (a marine worm with bristle-tipped organs of locomotion) has the greatest amount of zinc concentrated toward the tip of its jaw, where it needs the most strength. In the PNAS article the authors compare this polychaete (scientifically named Nereis limbata) with another one described last year in a paper in Science.

That worm, Glycera dibranchiata, a cousin of the clamworm and commonly known as a bloodworm, has copper-containing fangs which inject venom into its live prey. This discovery was a surprise since copper has never been found in such concentration in an organism. The copper fangs of the bloodworm were found to have a resistance to abrasion that is comparable to that of a human tooth, and greater than the clamworm jaws with zinc. But since the clamworm is a scavenger, it doesn´t need quite as much strength as the bloodworm to catch its food.

Professor Herbert Waite, in UCSB´s Department of Molecular, Cellular and Developmental Biology who originated this research, said that he was intrigued by finding metals in the mouths of the worms. "Usually the healthy cells in our bodies have pathways to deal with the toxicity of these metals," said Waite. "When zinc and copper imbalances occur, serious pathological disorders result. In the case of the jaws, however, the metals are intentionally concentrated to serve a function, and this highlights the exotic nature of these structures."

He explained that it is usually axiomatic that if (in materials science) you want something hard, stiff and wear-resistant, it needs to have mineral in it – minerals are the best materials for making something stiff. In nature´s best cutting structure, vertebrate tooth enamel, the mineral content is 95 percent. Yet the clamworms do not use any mineral for hardening, thus revealing a new paradigm in nature and sparking new ideas for materials science.

"The jaws are much lighter than if they were calcified," said Waite. "If you want something lightweight then you reduce reliance on minerals. I´m not sure why, in their watery environment, the clamworms jaws need to be light." Yet the jaws are lightweight, wear-resistant biomaterials without mineral.

"It´s not that technology will copy verbatim what the worm does," said Waite. "But we are interested in knowing concepts of how organics interface with transition metals to produce functional material." Waite has studied the way that mussels attach to rocks. Their attachment threads are another example of the use of copper and zinc in nature. "Their biochemistry is very similar to both worms. It´s only natural that I would get into the jaws."

"A lot of science involved in exploring the relationship between metals and proteins is so interdisciplinary," he said. "A little lab like mine couldn´t hope to handle it independently. We pooled expertise in physics, inorganic chemistry, materials science and biology. UCSB is really good at interdisciplinary work."

For their study, the scientists also used labs outside of UCSB. For example, they used a nanoindentation device in the lab of Thomas Schöberl of the Austrian Academy of Sciences to test for mechanical properties -- flexibility, hardness and elasticity. Besides nanoindentation, a number of state-of-the-art methods were used to study the jaws, including x-ray scattering using a synchrotron at Argonne National Laboratory in Illinois.

The first author on the paper, Helga C. Lichtenegger of the Vienna University of Technology in Austria, came to UCSB to collaborate with Waite and Stucky on the research. Other authors include Henrik Birkedal of UCSB, Thomas Schöberl of the Austrian Academy of Sciences, Jann T. Ruokolainen of the Helsinki University of Technology in Finland, and Julie O. Cross and Steve M. Heald from Argonne National Laboratory.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>