Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Twist on DNA

17.07.2003


Using a tool kit of lasers, tiny beads and a Lego set, Howard Hughes Medical Institute researchers have made the first measurement of the torsional, or twisting, elasticity of a single molecule of DNA.



The measurements reveal that DNA is significantly stiffer than previously thought and, when wound, may in fact provide enough power to be used as a sort of molecular, rubberband motor to propel nanomachines. Although that type of application may be well in the future, the studies are significant because they offer a blueprint for measuring the contortions that DNA undergoes during replication and other key processes.

The researchers, led by Howard Hughes Medical Institute investigator Carlos Bustamante, reported their research in the July 17, 2003, issue of the journal Nature. Bustamante and the paper’s two lead authors, graduate students Zev Bryant and Michael Stone, are at the University of California, Berkeley.


“This finding is important because many of the processes involved in reading the information in DNA involve distorting the DNA molecule,” said Bustamante. “And to truly understand these processes, we need to understand the energy costs involved in the interaction between the protein that induces distortion and the DNA.”

Almost ten years ago, Bustamante and his colleagues measured the extensional elasticity of single-strand DNA, by attaching a DNA molecule at either end to tiny beads. Using a laser “magnetic tweezers” instrument, the researchers applied a precisely known force to stretch the molecule. However, measuring the torsional stiffness of the molecule proved far more difficult.

“For almost seven years, I couldn’t convince any graduate student or postdoc to do these experiments,” said Bustamante. “I would tell them my idea, which I thought was really great, and they would look at me, smile and say, `Yeah, yeah, great, nice idea … next?’ Finally, Zev and Mike came to my office and said, `We’re going to try this crazy experiment of yours. It’s not going to work, but we’ll try it, anyway.’”

Bustamante’s scheme involved attaching the ends of a single DNA molecule between two tiny beads as they had done before. However, in the torque-measurement experiments, the researchers then biochemically “nicked” a point on the double-strand DNA to create a single chemical bond swivel. Near this nick, on the side of the rotating bead, the researchers attached a third “indicator” bead. They then rapidly wound the DNA molecule up thousands of times — while holding the rotor bead steady with flow — using a twisting robot built from Legos. After the winding process, they stopped the flow and followed the unwinding of the DNA molecule by looking at the spinning of the rotor bead in real time.

By measuring the resulting spins of a series of indicator beads of differing diameters as the molecule untwisted, the researchers obtained data that they could analyze to measure the DNA molecule’s torsional stiffness.

Bustamante and his colleagues discovered from this analysis that the DNA molecule was about 40 percent more resistant to twisting than had been reported by other researchers. “We’re very surprised and excited about this finding because it represents the first direct measurement of the torsional stiffness of a single DNA molecule,” said Bustamante. “The other measurements were done on molecules in bulk, and were indirect.”

According to Bustamante, the conclusive measurement of torsional elasticity will enable researchers to understand better the “partitioning” of mechanical energy as a DNA molecule undergoes twisting during biological processes. While some fraction of the energy twists the double-stranded spiral of the molecule itself, another fraction creates “writhing” — a hairpin looping of the molecule like an over-twisted rope. “This value of forty percent more tells us we may need to revise our ideas about such partitioning,” said Bustamante.

Importantly, he said, the ability to measure molecular torque will enable a new class of experiments to study the mechanical behavior of protein enzymes that interact with the DNA molecule. For example, Bustamante and his colleagues are now using the same experimental apparatus to explore how the enzyme DNA polymerase — which copies a single DNA strand by pulling itself along the strand’s length — exerts torque on the DNA strand as it works.

More speculative, said Bustamante, is the idea that the DNA molecule might provide energy to power molecule-sized nanomotors. “We found that if you pull the DNA molecule, it will overstretch and must unwind. During this process, the mechanical linear force applied to the end of the molecule gets transformed into the generation of torque. If you relax the molecule, it will rewind, generating torque in the opposite direction. The molecule then behaves as a reversible force-torque converter,” said Bustamante. “If you attached rotational elements to the molecule, when you pulled the molecule, it would begin rotating and would drive the molecule as a motor.”

Contact: Jim Keeley, keeleyj@hhmi.org

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>