Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling in biomechanics

01.08.2003


Which design principles unify the diversity of life on earth? To understand how biological designs emerged by natural selection, biomechanics studies organisms by applying engineering science and mechanics. Biomechanics studies life from molecules to ecosystems. Questions range ‘how do cells form tissue’, over ‘what shapes a muscle’ to ‘how do animals fly’ and ‘which mechanical constraints govern body shape and -dynamics when animals increase in size’. Biomechanics is applied not only to extant but also fossil organisms to reconstruct the way of life of extinct plants and animals.

Most biomechanists aim to unravel the building principles of nature by reverse engineering. But they also work in the opposite direction from biomechanical solutions to engineering designs. This field is known as biomimetics, and several examples are discussed in this issue. One famous example is George de Mestral’s invention of Velcro that was inspired by the cockleburs ingenious attachment mechanism. We are only beginning to exploit the rich source of stunning designs found in nature.

Highlighted papers



How to perform measurements in a hovering animal’s wake: Physical modelling of the vortex wake of the hawkmoth, Manduca sexta”
(Tytell, E.D., and Ellington, C.P.)

How difficult is it to estimate forces on the wings of a flying insect or bird by measuring the airflow in its wake? Difficult, but not impossible, according to our study modelling the wake of a flying hawkmoth, and maybe easier on smaller animals. One of the major difficulties in studying animal flight has been that the wings often move too fast to make any useful measurements of the air flow around them. This is a sizeable problem, because insects and some small birds take advantage of a wide array of ‘high lift’ mechanisms that may be useful for future generations of flying machines. Rather than trying to make the difficult measurements around actual moving wings, most researchers have tried to deduce the forces on the wings from the airflow in the wake. While theoretically possible, this type of measurement had a setback in the ‘80s, when two studies on birds measured too little force to keep the animals aloft. Our study examines the feasibility of these measurements by studying the flow behind a highly simplified physical model of a hawkmoth. The trouble, it turns out, is turbulence. Large animals, including all but the smallest birds, produce wakes with substantial turbulence that causes the wake to loose strength rapidly, making it very difficult to back-calculate the forces around the wings. This back-calculation is not impossible, just difficult; but it is probably not feasible in a real experimental setup. Most insects, though, are small enough that their wakes are laminar, with smooth and even flow, which makes the wake strength stay constant for a long time. Our study shows that it is feasible to examine insects’ high lift mechanisms by observing the airflow in the wake behind them because of their laminar wakes.

Cyberkelp: An integrative approach to the modeling of flexible organisms (M. Denny and B. Hale)

Biomechanical models come in a variety of forms: conceptual models, physical models, and mathematical models (both of the sort written down on paper and the sort carried out on computers). There are model structures (such as the muscles that power insect flight muscle the tendons of rats’ tails), model organisms (such as the moth, Manduca sexta), even model systems of organisms (such as the communities that live on wave-swept rocky shores). These different types of models are typically employed separately, but their value often can be enhanced if their insights are combined. In this brief report we explore a particular example of such integration among models, as applied to a flexible marine alga, the giant bull kelp Nereocystis leutkeana. Because of these seaweeds’ large size and wave-swept habitat, it is difficult to make measurements on them directly. But because of their economic and ecological importance, it would be advantageous to understand how they work. A conceptual model (a submerged buoyant ball tethered to the seafloor by a rubbery string) serves as a template for the construction of a mathematical model of this model species of kelp. The validity of this numerical model is then tested in the laboratory using small physical models. The validated mathematical model is then used in conjunction with a computer-controlled testing apparatus to simulate the forces that would be placed on a real, full-size kelp in the ocean. This combination of models (what we call “cyberkelp”) allows us to experiment with a species that would otherwise be beyond our abilities.

Tim Watson | alfa
Further information:
http://www.pubs.royalsoc.ac.uk
http://www.catchword.com/rsl/09628436/previews/contp1-1.htm

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>