Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling in biomechanics

01.08.2003


Which design principles unify the diversity of life on earth? To understand how biological designs emerged by natural selection, biomechanics studies organisms by applying engineering science and mechanics. Biomechanics studies life from molecules to ecosystems. Questions range ‘how do cells form tissue’, over ‘what shapes a muscle’ to ‘how do animals fly’ and ‘which mechanical constraints govern body shape and -dynamics when animals increase in size’. Biomechanics is applied not only to extant but also fossil organisms to reconstruct the way of life of extinct plants and animals.

Most biomechanists aim to unravel the building principles of nature by reverse engineering. But they also work in the opposite direction from biomechanical solutions to engineering designs. This field is known as biomimetics, and several examples are discussed in this issue. One famous example is George de Mestral’s invention of Velcro that was inspired by the cockleburs ingenious attachment mechanism. We are only beginning to exploit the rich source of stunning designs found in nature.

Highlighted papers



How to perform measurements in a hovering animal’s wake: Physical modelling of the vortex wake of the hawkmoth, Manduca sexta”
(Tytell, E.D., and Ellington, C.P.)

How difficult is it to estimate forces on the wings of a flying insect or bird by measuring the airflow in its wake? Difficult, but not impossible, according to our study modelling the wake of a flying hawkmoth, and maybe easier on smaller animals. One of the major difficulties in studying animal flight has been that the wings often move too fast to make any useful measurements of the air flow around them. This is a sizeable problem, because insects and some small birds take advantage of a wide array of ‘high lift’ mechanisms that may be useful for future generations of flying machines. Rather than trying to make the difficult measurements around actual moving wings, most researchers have tried to deduce the forces on the wings from the airflow in the wake. While theoretically possible, this type of measurement had a setback in the ‘80s, when two studies on birds measured too little force to keep the animals aloft. Our study examines the feasibility of these measurements by studying the flow behind a highly simplified physical model of a hawkmoth. The trouble, it turns out, is turbulence. Large animals, including all but the smallest birds, produce wakes with substantial turbulence that causes the wake to loose strength rapidly, making it very difficult to back-calculate the forces around the wings. This back-calculation is not impossible, just difficult; but it is probably not feasible in a real experimental setup. Most insects, though, are small enough that their wakes are laminar, with smooth and even flow, which makes the wake strength stay constant for a long time. Our study shows that it is feasible to examine insects’ high lift mechanisms by observing the airflow in the wake behind them because of their laminar wakes.

Cyberkelp: An integrative approach to the modeling of flexible organisms (M. Denny and B. Hale)

Biomechanical models come in a variety of forms: conceptual models, physical models, and mathematical models (both of the sort written down on paper and the sort carried out on computers). There are model structures (such as the muscles that power insect flight muscle the tendons of rats’ tails), model organisms (such as the moth, Manduca sexta), even model systems of organisms (such as the communities that live on wave-swept rocky shores). These different types of models are typically employed separately, but their value often can be enhanced if their insights are combined. In this brief report we explore a particular example of such integration among models, as applied to a flexible marine alga, the giant bull kelp Nereocystis leutkeana. Because of these seaweeds’ large size and wave-swept habitat, it is difficult to make measurements on them directly. But because of their economic and ecological importance, it would be advantageous to understand how they work. A conceptual model (a submerged buoyant ball tethered to the seafloor by a rubbery string) serves as a template for the construction of a mathematical model of this model species of kelp. The validity of this numerical model is then tested in the laboratory using small physical models. The validated mathematical model is then used in conjunction with a computer-controlled testing apparatus to simulate the forces that would be placed on a real, full-size kelp in the ocean. This combination of models (what we call “cyberkelp”) allows us to experiment with a species that would otherwise be beyond our abilities.

Tim Watson | alfa
Further information:
http://www.pubs.royalsoc.ac.uk
http://www.catchword.com/rsl/09628436/previews/contp1-1.htm

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>