Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling in biomechanics

01.08.2003


Which design principles unify the diversity of life on earth? To understand how biological designs emerged by natural selection, biomechanics studies organisms by applying engineering science and mechanics. Biomechanics studies life from molecules to ecosystems. Questions range ‘how do cells form tissue’, over ‘what shapes a muscle’ to ‘how do animals fly’ and ‘which mechanical constraints govern body shape and -dynamics when animals increase in size’. Biomechanics is applied not only to extant but also fossil organisms to reconstruct the way of life of extinct plants and animals.

Most biomechanists aim to unravel the building principles of nature by reverse engineering. But they also work in the opposite direction from biomechanical solutions to engineering designs. This field is known as biomimetics, and several examples are discussed in this issue. One famous example is George de Mestral’s invention of Velcro that was inspired by the cockleburs ingenious attachment mechanism. We are only beginning to exploit the rich source of stunning designs found in nature.

Highlighted papers



How to perform measurements in a hovering animal’s wake: Physical modelling of the vortex wake of the hawkmoth, Manduca sexta”
(Tytell, E.D., and Ellington, C.P.)

How difficult is it to estimate forces on the wings of a flying insect or bird by measuring the airflow in its wake? Difficult, but not impossible, according to our study modelling the wake of a flying hawkmoth, and maybe easier on smaller animals. One of the major difficulties in studying animal flight has been that the wings often move too fast to make any useful measurements of the air flow around them. This is a sizeable problem, because insects and some small birds take advantage of a wide array of ‘high lift’ mechanisms that may be useful for future generations of flying machines. Rather than trying to make the difficult measurements around actual moving wings, most researchers have tried to deduce the forces on the wings from the airflow in the wake. While theoretically possible, this type of measurement had a setback in the ‘80s, when two studies on birds measured too little force to keep the animals aloft. Our study examines the feasibility of these measurements by studying the flow behind a highly simplified physical model of a hawkmoth. The trouble, it turns out, is turbulence. Large animals, including all but the smallest birds, produce wakes with substantial turbulence that causes the wake to loose strength rapidly, making it very difficult to back-calculate the forces around the wings. This back-calculation is not impossible, just difficult; but it is probably not feasible in a real experimental setup. Most insects, though, are small enough that their wakes are laminar, with smooth and even flow, which makes the wake strength stay constant for a long time. Our study shows that it is feasible to examine insects’ high lift mechanisms by observing the airflow in the wake behind them because of their laminar wakes.

Cyberkelp: An integrative approach to the modeling of flexible organisms (M. Denny and B. Hale)

Biomechanical models come in a variety of forms: conceptual models, physical models, and mathematical models (both of the sort written down on paper and the sort carried out on computers). There are model structures (such as the muscles that power insect flight muscle the tendons of rats’ tails), model organisms (such as the moth, Manduca sexta), even model systems of organisms (such as the communities that live on wave-swept rocky shores). These different types of models are typically employed separately, but their value often can be enhanced if their insights are combined. In this brief report we explore a particular example of such integration among models, as applied to a flexible marine alga, the giant bull kelp Nereocystis leutkeana. Because of these seaweeds’ large size and wave-swept habitat, it is difficult to make measurements on them directly. But because of their economic and ecological importance, it would be advantageous to understand how they work. A conceptual model (a submerged buoyant ball tethered to the seafloor by a rubbery string) serves as a template for the construction of a mathematical model of this model species of kelp. The validity of this numerical model is then tested in the laboratory using small physical models. The validated mathematical model is then used in conjunction with a computer-controlled testing apparatus to simulate the forces that would be placed on a real, full-size kelp in the ocean. This combination of models (what we call “cyberkelp”) allows us to experiment with a species that would otherwise be beyond our abilities.

Tim Watson | alfa
Further information:
http://www.pubs.royalsoc.ac.uk
http://www.catchword.com/rsl/09628436/previews/contp1-1.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>