Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell death gives clue to brain cell survival

01.08.2003


A signal that triggers half the stem cells in the developing brain to commit suicide at a stage where their survival will likely do more harm than good has been identified by researchers at the Medical College of Georgia and the University of Georgia.



Identifying the factors that result in the timely, massive cell suicide is important to understanding the developmental puzzle, the researchers say of the work featured on the cover of the Aug. 4 issue of the Journal of Cell Biology.

They say it also gives clues about cell death - and the brain´s possible recovery - in devastating diseases such as Alzheimer´s, Parkinson´s and stroke. MCG´s Erhard Bieberich and UGA´s Brian G. Condie have found that the lipid ceramide and the protein PAR-4 - each already implicated for playing a role in cell death - become deadly partners inside a dividing stem cell in the developing mouse brain.


"If PAR-4 is there and ceramide is high, the cell is lost, doomed to die," says Dr. Bieberich, biochemist at the Medical College of Georgia. "You can eliminate one of them, you can knock down the expression of PAR-4 or ceramide and the other stays up but the cell doesn´t die. But if both signals are together up-regulated, then the cell is destined to die."

At a certain point in cell division, just before neurons begin forming, there is massive production of proteins and up-regulation of lipids. During that phase, decisions are made about which daughter cells get what composition of lipids and proteins, decisions that affect the cells´ future function.

Typically at this point in division, the two daughter cells birthed from a single stem cell will have the same makeup and the same ultimate purpose.

Yet in a subpopulation of the stem cells involved in brain development, the scientists have documented increasing levels of ceramide in both resulting daughter cells while its death partner, PAR-4, gets handed off to only half the cells.

Cells destined to survive, and likely further divide and differentiate, are handed instead a protein called nestin. "Nestin is a marker for a particular stage of neuronal development," says Dr. Bieberich. "Nestin-bearing cells will develop into neural cells such as our neurons or astrocytes or other cells. So it makes sense that the cells that inherit nestin, but not PAR-4, will survive and develop into normal neuronal cells whereas the other ones will die."

It also makes sense that the lethal coupling that signals cell suicide, or apoptosis, comes at a point where the doomed cells seem to have lost their potential usefulness and where their continued survival would result in a malformed brain.

"During normal development in the central nervous system there is a great deal of cell death that occurs that seems to be required to create the final shape and structure of the brain," says Dr. Condie, developmental neurobiologist at the University of Georgia and MCG. "In cases where that process has been interfered with, you end up with this excess of cells that leads to a malformation of the developing brain.

"One of the ideas behind why there is an excess of cells generated during development is that it may be a mechanism for compensating for environmental stresses or other types of stresses that an embryo may encounter during development," says Dr. Condie. "So you actually generate an excess of the cells you need and then prune those cells back to an appropriate number and location for the brain to develop in a normal fashion." It´s a typical characteristic of embryonic development for certain cells to survive and others to die, he says.

"During embryonic development, we would like to know how stem cell death is regulated because we know it needs to be regulated," says Dr. Bieberich. "You don´t want the whole brain dying or overgrowing. You have to find a balance. How is that balanced maintained? What are the secrets for that?

"We have designed experiments showing that these two signals are necessary to make stem cells die, but you are talking about a whole signaling cascade that starts out with ceramide and PAR-4 and then there are a lot of unknown steps until we end up with the actual death of a cell," says Dr. Bieberich.

The MCG researcher recently received a grant from the National Institutes of Health so he and Dr. Condie can explore these unknowns such as how the expression of PAR-4 and ceramide is regulated, what accounts for the asymmetrical distribution of PAR-4 and just how the deadly duo interact.

But the two are excited about what they have found already. "If we don´t know the signals, we don´t know where to begin," says Dr. Bieberich.

They also are intrigued by where the work may lead, including helping minimize cell death that occurs when stem cells in the adult brain begin to once again divide in response to a stroke, as an example.

"We all know that even in adulthood, we have stem cells in the brain and they may be able to repair damaged areas," says Dr. Bieberich. "But if the same cell death mechanisms are still active, there will not be an increase in the number of stem cells because always one cell will die and one will survive. Maybe we can control this and increase the number of endogenous stem cells.

"Also during the neurodegeneration that occurs in diseases such as Alzheimer´s and Parkinson´s, we have a lot of cell death going on and we would like to know what signals are involved that make those brain cells die. They may be very similar or even exactly the same as the ones we investigate with our embryonic mouse stem cells."

Study co-authors include Scott Noggle, an MCG graduate student working with Dr. Condie at UGA; Sarah MacKinnon, a former participant in MCG´s summer research programs for undergraduates who is now a graduate student at the University of Virginia; and Dr. Jeane Silva, Dr. Bieberich´s research coordinator.

Contact: Phil Williams, (+1) 706-542-8501

Phil Williams | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>