Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First structure of transporter enzyme family is solved

01.08.2003


Finding will aid drug design to combat depression, stroke and diabetes. Scientists are a step closer to understanding how essential nutrients, vitamins and minerals are ferried into cells.



For the first time, a member of the Major Facilitator Superfamily (MFS) of transport proteins, found in almost every form of life, has been visualised by researchers from Imperial College London and the University of California, Los Angeles.

Reporting in Science today, the researchers reveal the structure of lactose permease, the enzyme in Esherichia coli that helps pump lactose, the major sugar in milk, into cells. Using the structure data, the researchers propose a possible mechanism of action, which is likely to be common among other transport proteins in this family.


Professor So Iwata of Imperial’s Centre for Structural Biology and senior author of the paper explains: "Membrane transport proteins play major roles in depression, stroke and diabetes. Unravelling their structure is critical not only for understanding how we function, but also to improve drug design. Indeed, two of the most widely prescribed drugs in the world, Prozac and Prilosec, act through these proteins.

"The three-dimensional structure of lactose permease gives us our first real picture of how the family of enzymes work. For example, in humans the MFS transporter GLUT4 is responsible for increased glucose uptake in response to insulin stimulation, which has important implications for diabetes. Using the structure of lactose permease we can model GLUT4 and design drugs to control glucose uptake."

Membrane transport proteins play a crucial role in maintaining the selective internal environment of cells. They act as gatekeepers by controlling the entry of nutrients and the exit of waste products. But only four transport protein structures are presently known, compared with over 30,000 soluble protein structures, because they are notoriously difficult to crystallise.

Professor Iwata’s Laboratory of Membrane Protein Crystallography is one of a small number around the world that focuses on determining the three-dimensional structure of membrane embedded proteins.

By combining expertise with Professor Ron Kaback of the University of California, who has been working on lactose permease for 30 years, they have finally solved the structure of this important protein.

Previous biochemical studies had identified six sites within the genetic code of lactose permease that are thought to be crucial to transportation. Using the latest X-ray crystallography techniques, the researchers were able to visualise how lactose permease binds to sugar.

"We have been able to pinpoint areas in the genetic code critical for binding and transport of sugar, which are consistent with information derived from biochemical studies, "said Professor Iwata.

By combining the structural data with previous findings the researchers propose a mechanism of enzyme action.

"Computer simulations show that the enzyme works in a surprisingly simple way. The enzyme is literally gate-keeping. Usually the gate is open towards the outside of the cells and various substances can reach the sugar-binding pocket in the middle of the enzyme, embedded in the cell membrane.

"Only when the enzyme identifies lactose does the other gate, connected to the inside of the cell, open and let the sugar go through. This process is driven by energy called the ’proton motive force’ and should be common among membrane transport proteins."

Professor Iwata added: "Only 40 years ago the idea that genes could be specifically turned on or off in response to different environmental conditions was revolutionary. It was studies in E. coli that showed the bacterial cellular machinery needed to digest lactose is only activated when glucose is not available. Now we have a detailed molecular understanding of how lactose permease contributes to this process."

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>