Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First structure of transporter enzyme family is solved

01.08.2003


Finding will aid drug design to combat depression, stroke and diabetes. Scientists are a step closer to understanding how essential nutrients, vitamins and minerals are ferried into cells.



For the first time, a member of the Major Facilitator Superfamily (MFS) of transport proteins, found in almost every form of life, has been visualised by researchers from Imperial College London and the University of California, Los Angeles.

Reporting in Science today, the researchers reveal the structure of lactose permease, the enzyme in Esherichia coli that helps pump lactose, the major sugar in milk, into cells. Using the structure data, the researchers propose a possible mechanism of action, which is likely to be common among other transport proteins in this family.


Professor So Iwata of Imperial’s Centre for Structural Biology and senior author of the paper explains: "Membrane transport proteins play major roles in depression, stroke and diabetes. Unravelling their structure is critical not only for understanding how we function, but also to improve drug design. Indeed, two of the most widely prescribed drugs in the world, Prozac and Prilosec, act through these proteins.

"The three-dimensional structure of lactose permease gives us our first real picture of how the family of enzymes work. For example, in humans the MFS transporter GLUT4 is responsible for increased glucose uptake in response to insulin stimulation, which has important implications for diabetes. Using the structure of lactose permease we can model GLUT4 and design drugs to control glucose uptake."

Membrane transport proteins play a crucial role in maintaining the selective internal environment of cells. They act as gatekeepers by controlling the entry of nutrients and the exit of waste products. But only four transport protein structures are presently known, compared with over 30,000 soluble protein structures, because they are notoriously difficult to crystallise.

Professor Iwata’s Laboratory of Membrane Protein Crystallography is one of a small number around the world that focuses on determining the three-dimensional structure of membrane embedded proteins.

By combining expertise with Professor Ron Kaback of the University of California, who has been working on lactose permease for 30 years, they have finally solved the structure of this important protein.

Previous biochemical studies had identified six sites within the genetic code of lactose permease that are thought to be crucial to transportation. Using the latest X-ray crystallography techniques, the researchers were able to visualise how lactose permease binds to sugar.

"We have been able to pinpoint areas in the genetic code critical for binding and transport of sugar, which are consistent with information derived from biochemical studies, "said Professor Iwata.

By combining the structural data with previous findings the researchers propose a mechanism of enzyme action.

"Computer simulations show that the enzyme works in a surprisingly simple way. The enzyme is literally gate-keeping. Usually the gate is open towards the outside of the cells and various substances can reach the sugar-binding pocket in the middle of the enzyme, embedded in the cell membrane.

"Only when the enzyme identifies lactose does the other gate, connected to the inside of the cell, open and let the sugar go through. This process is driven by energy called the ’proton motive force’ and should be common among membrane transport proteins."

Professor Iwata added: "Only 40 years ago the idea that genes could be specifically turned on or off in response to different environmental conditions was revolutionary. It was studies in E. coli that showed the bacterial cellular machinery needed to digest lactose is only activated when glucose is not available. Now we have a detailed molecular understanding of how lactose permease contributes to this process."

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>