Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "Knockout" Map Helps Study Gene Functions in Model Plant

01.08.2003


The image displays a single Arabidopsis mutant line from the Salk Institute insertion mutant collection/database. The location of the Agrobactrium T-DNA insertion is known from sequencing of The image displays a single Arabidopsis mutant line from the Salk Institute insertion mutant collection/database. The location of the Agrobactrium T-DNA insertion is known from sequencing of the genome.
Credit: Kent Schnoeker, The Salk Institute


The image depicts the locations of Agrobacterium T-DNA insertions (triangles) in a small segment of one Arabidopsis chromosome. The locations of individual predicted genes (top line) and the transcription units (bottom line) are indicated by the multi-colored boxes.
Credit: Huaming Chen/Joseph Ecker


Scientists have inactivated almost three-quarters of all genes in the genome of Arabidopsis thaliana, a species widely used in plant research. The feat, which results in the largest so-called "knockout" gene collection of a complex multi-cellular organism, now allows researchers to study the function of each of those genes individually or together.

The findings, published in the August 1 issue of the journal Science, mark an important milestone in the field of plant genomics. Following the release of the Arabidopsis genome sequence in 2000, the National Science Foundation (NSF) jump started the next phase of plant genome research, instituting the Arabidopsis 2010 Project to determine the location and function of each and every Arabidopsis gene by the year 2010. Knowing the function of all the genes in this model plant will aide scientists immensely in their work to improve disease resistance, control how quickly or slowly fruit will ripen, and create healthier and improved crops.

Joe Ecker at the Salk Institute for Biological Studies and his research team created knockouts, or inactivating mutations, in 21,700 of the estimated 29,454 Arabidopsis genes. Knocking out a gene or group of genes allows scientists to observe what goes wrong in the mutant plant and determine what function the inactivated gene(s) had in the plant system.



"This project provides a resource that is essential for understanding the function of genes - mutants in which individual genes have been inactivated," says Parag Chitnis, program officer in the NSF’s Division of Molecular and Cellular Biosciences. "Because the expression of hundreds of genes can change in a single condition…, large complete collections of stable mutations are becoming an important tool for whole genome function and evolutionary biology," the report further emphasizes.

History was made in December of 2000 when the Arabidopsis research community released the complete sequence of the mustard family weed. Yet the exact location and function of the nearly 29,500 Arabidopsis genes remained unknown. Using the plant’s genome sequence in conjunction with new technologies in the field, the Salk team identified the precise locations of more than 88,000 mutations they made in the Arabidopsis genome. That advance nearly completes a key step in the 2010 project. But before the function of all Arabidopsis genes can be determined, a knockout mutant plant must be created for every single gene in the plant’s genome.

To create a gene knockout, scientists use a bacterium called Agrobacterium to insert a code that tells a specific gene to turn off. According to Ecker, this process of T-DNA integration has been carried out for well over 25 years, but this study provides a new perspective on using the technique to analyze gene function.

Some genes, it turns out, contain certain features that mark them as favored targets of inactivation. Additionally, Ecker and his colleagues have discovered that fewer inactivations occur near the centromeres -- the thinner gene-poor regions of the chromosome. "These results provide significant new information in both the areas of functional genomics and basic plant biology," says Ecker.

Because Arabidopsis is a model plant, knowledge gained from this plant can be applied to many other plants as well. Ecker is optimistic about the progress of this project. "The information you get from Arabidopsis is very likely to be immediately applicable to all plants. The information that we produce will be used by a range of people to improve plant growth, yield, and drought tolerance."

The database of Arabidopsis gene knockouts completed thus far is available to the public, as are all corresponding strains of mutant plants created by the research team, which includes scientists from the Salk Institute, the NRC Plant Biotechnology Institute, and UC San Diego. Funding was provided by the National Science Foundation Arabidopsis 2010 Project and the Department of Energy.

Principal Investigator: Joseph Ecker, +1-858-453-4100 ext.1752, ecker@salk.edu

Andrea Spiker | National Science Foundation
Further information:
http://signal.salk.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>