Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Critical for Neurotransmitter Synthesis Also Affects Longevity

31.07.2003


Dopamine and serotonin, two neurotransmitters in the central nervous system, are intimately involved in muscle control, memory, sleep, and emotional behavior. They are also linked to illnesses such as Parkinson’s disease and mood disorders. Now, regulation of longevity may be added to this list.



Three natural variants in the gene for DOPA decarboxylase (DDC), an enzyme required for the production of dopamine and serotonin, together accounted for 15 percent of the genetic contribution to variation in life span among strains of the fruit fly Drosophila melanogaster, according to recent research by geneticists at North Carolina State University.

“This is a surprisingly large effect for a gene affecting a complex trait, such as longevity or body size, which is typically controlled by many genes with relatively small effects,” said Dr. Trudy Mackay, William Neal Reynolds Professor of genetics at NC State and director of the study. Results of the study appear in the paper “Dopa decarboxylase affects variation in Drosophila longevity,” published in the July 27 online edition of Nature Genetics.


The fruit fly is a handy model organism for studying the genetics of longevity and other complex traits in animals. “We can make designer genotypes in fruit flies and test the effects of mutations,” said Mackay.

The three variants interacted in a complex way to affect variation in longevity. Some variants in the DDC gene increased life span of the fruit flies and others decreased it. Interestingly, some variants that were associated with increased life span were not present in the population as frequently as expected, while others associated with decreased life span were more common than expected. Natural selection processes do not simply favor longevity; instead, they promote variability in life span.

The research was a collaboration among scientists at NC State University and the Institute of Molecular Genetics of the Russian Academy of Sciences in Moscow. It was funded in part by grants from the National Institutes of Health, the Russian Fund of Basic Research, and the Russian Academy of Science.

“Our results have real implications for humans,” said Mackay. “The DDC gene is a strong candidate for regulation of longevity in humans. The various genome projects active today have revealed an astounding similarity in the genetic makeup of organisms as disparate as yeast, Drosophila, and humans. For instance, over two-thirds of the known human disease genes have corresponding genes in Drosophila, and genes affecting key biological processes seem to be conserved across all animals.”

Mackay and her team of geneticists have been working to identify genes affecting life span in Drosophila in order to discover the genetic basis of complex traits: what genes and mutations affect the trait, how genes interact with other genes and with the environment, and the molecular basis of the interactions.

“If everything is interactive, the effect of a single gene on a complex trait may be marginal,” said Mackay. “But it’s not impossible to foresee future pharmacological interventions that could improve the quality of life of the aging population.”

Abstract: Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span1, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTL) affecting variation in longevity between two Drosophila melanogaster strains2. Here, we show that the longevity QTL in the 36E; 38B cytogenetic interval on chromosome 2 contains multiple closely linked QTL, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest maintenance of the polymorphisms by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin3. Thus, these data implicate variation in the synthesis of bioamines as a major factor contributing to natural variation in individual life span.

Dr. Trudy Mackay | North Carolina State University
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>