Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene Critical for Neurotransmitter Synthesis Also Affects Longevity


Dopamine and serotonin, two neurotransmitters in the central nervous system, are intimately involved in muscle control, memory, sleep, and emotional behavior. They are also linked to illnesses such as Parkinson’s disease and mood disorders. Now, regulation of longevity may be added to this list.

Three natural variants in the gene for DOPA decarboxylase (DDC), an enzyme required for the production of dopamine and serotonin, together accounted for 15 percent of the genetic contribution to variation in life span among strains of the fruit fly Drosophila melanogaster, according to recent research by geneticists at North Carolina State University.

“This is a surprisingly large effect for a gene affecting a complex trait, such as longevity or body size, which is typically controlled by many genes with relatively small effects,” said Dr. Trudy Mackay, William Neal Reynolds Professor of genetics at NC State and director of the study. Results of the study appear in the paper “Dopa decarboxylase affects variation in Drosophila longevity,” published in the July 27 online edition of Nature Genetics.

The fruit fly is a handy model organism for studying the genetics of longevity and other complex traits in animals. “We can make designer genotypes in fruit flies and test the effects of mutations,” said Mackay.

The three variants interacted in a complex way to affect variation in longevity. Some variants in the DDC gene increased life span of the fruit flies and others decreased it. Interestingly, some variants that were associated with increased life span were not present in the population as frequently as expected, while others associated with decreased life span were more common than expected. Natural selection processes do not simply favor longevity; instead, they promote variability in life span.

The research was a collaboration among scientists at NC State University and the Institute of Molecular Genetics of the Russian Academy of Sciences in Moscow. It was funded in part by grants from the National Institutes of Health, the Russian Fund of Basic Research, and the Russian Academy of Science.

“Our results have real implications for humans,” said Mackay. “The DDC gene is a strong candidate for regulation of longevity in humans. The various genome projects active today have revealed an astounding similarity in the genetic makeup of organisms as disparate as yeast, Drosophila, and humans. For instance, over two-thirds of the known human disease genes have corresponding genes in Drosophila, and genes affecting key biological processes seem to be conserved across all animals.”

Mackay and her team of geneticists have been working to identify genes affecting life span in Drosophila in order to discover the genetic basis of complex traits: what genes and mutations affect the trait, how genes interact with other genes and with the environment, and the molecular basis of the interactions.

“If everything is interactive, the effect of a single gene on a complex trait may be marginal,” said Mackay. “But it’s not impossible to foresee future pharmacological interventions that could improve the quality of life of the aging population.”

Abstract: Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span1, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTL) affecting variation in longevity between two Drosophila melanogaster strains2. Here, we show that the longevity QTL in the 36E; 38B cytogenetic interval on chromosome 2 contains multiple closely linked QTL, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest maintenance of the polymorphisms by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin3. Thus, these data implicate variation in the synthesis of bioamines as a major factor contributing to natural variation in individual life span.

Dr. Trudy Mackay | North Carolina State University
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>