Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein: Getting to the Meat of this essential Element

31.07.2003


Living organisms operate with a variety of tens of thousands of protein structures and, though much research has been done on individual protein systems, little is understood about how different protein systems interact. Now an effort at Texas A&M University is bringing together all known information in an extensive, searchable internet site called Binding Interface Database.



"No one understands the rules of protein interaction," said Dr. Jerry Tsai, Texas Agricultural Experiment Station bioinformatics researcher. "So we are bringing all that is known together in one place."

After one year, the Binding Interface Database, has 245 interacting protein pairs with more than 1,500 "hot spots," or key interaction areas, documented.


"It’s like moving a sitting elephant," Tsai said. "It’s enormous. We spent about nine months just planning how it would be done." Tsai’s research is what scientists have dubbed "bioinformatics." That is, information technology applied to biology – software programs that process information derived from biological systems such as DNA sequence, cell images and protein crystal structures. "A researcher can come to the site, look at a protein or related protein and get a clue to what proteins relate," said Tiffany Fischer of Dallas, a doctoral biochemistry student who is managing the project with Tsai.

Tsai said others have attempted to create a protein binding database before but never in easy-to-maneuver format with searchable data. That’s where Fischer, whose bachelor’s degree is in genetics, lends expertise. She oversees a team of students who glean research papers for the useful and accurate information to enter into the database.

Fischer said the team is targeting the most biologically significant, widely researched proteins and systems initially. "The MAPK system, for example, is important because it is a proposed cancer-causing pathway associated with cell death and cell proliferation," she said. "That has been widely documented, so by putting what is known in the database, a researcher can come to one place to find out all that is known about the interactions of this system."

Still, less than 500 structures of proteins that interact are known, she added, though there are about 20,000 in protein structure database. One can search the system by protein or by system to get complete descriptions of proteins and their interactions. Also included is reference information that points to the source of the information.

Adding to what’s already in the database, Tsai said, the project now will focus on inputting information on adaptor/adapter/adaptin proteins, and apoptosis (programmed cell death such as when the tissue between fingers of a fetus goes away) and tumor suppressors.

Contact: Dr. Jerry Tsai, +1-979-458-3377, jerrytsai@tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://tsailab.tamu.edu/BID
http://www.tamu.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>