Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein: Getting to the Meat of this essential Element

31.07.2003


Living organisms operate with a variety of tens of thousands of protein structures and, though much research has been done on individual protein systems, little is understood about how different protein systems interact. Now an effort at Texas A&M University is bringing together all known information in an extensive, searchable internet site called Binding Interface Database.



"No one understands the rules of protein interaction," said Dr. Jerry Tsai, Texas Agricultural Experiment Station bioinformatics researcher. "So we are bringing all that is known together in one place."

After one year, the Binding Interface Database, has 245 interacting protein pairs with more than 1,500 "hot spots," or key interaction areas, documented.


"It’s like moving a sitting elephant," Tsai said. "It’s enormous. We spent about nine months just planning how it would be done." Tsai’s research is what scientists have dubbed "bioinformatics." That is, information technology applied to biology – software programs that process information derived from biological systems such as DNA sequence, cell images and protein crystal structures. "A researcher can come to the site, look at a protein or related protein and get a clue to what proteins relate," said Tiffany Fischer of Dallas, a doctoral biochemistry student who is managing the project with Tsai.

Tsai said others have attempted to create a protein binding database before but never in easy-to-maneuver format with searchable data. That’s where Fischer, whose bachelor’s degree is in genetics, lends expertise. She oversees a team of students who glean research papers for the useful and accurate information to enter into the database.

Fischer said the team is targeting the most biologically significant, widely researched proteins and systems initially. "The MAPK system, for example, is important because it is a proposed cancer-causing pathway associated with cell death and cell proliferation," she said. "That has been widely documented, so by putting what is known in the database, a researcher can come to one place to find out all that is known about the interactions of this system."

Still, less than 500 structures of proteins that interact are known, she added, though there are about 20,000 in protein structure database. One can search the system by protein or by system to get complete descriptions of proteins and their interactions. Also included is reference information that points to the source of the information.

Adding to what’s already in the database, Tsai said, the project now will focus on inputting information on adaptor/adapter/adaptin proteins, and apoptosis (programmed cell death such as when the tissue between fingers of a fetus goes away) and tumor suppressors.

Contact: Dr. Jerry Tsai, +1-979-458-3377, jerrytsai@tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://tsailab.tamu.edu/BID
http://www.tamu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>