Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein: Getting to the Meat of this essential Element

31.07.2003


Living organisms operate with a variety of tens of thousands of protein structures and, though much research has been done on individual protein systems, little is understood about how different protein systems interact. Now an effort at Texas A&M University is bringing together all known information in an extensive, searchable internet site called Binding Interface Database.



"No one understands the rules of protein interaction," said Dr. Jerry Tsai, Texas Agricultural Experiment Station bioinformatics researcher. "So we are bringing all that is known together in one place."

After one year, the Binding Interface Database, has 245 interacting protein pairs with more than 1,500 "hot spots," or key interaction areas, documented.


"It’s like moving a sitting elephant," Tsai said. "It’s enormous. We spent about nine months just planning how it would be done." Tsai’s research is what scientists have dubbed "bioinformatics." That is, information technology applied to biology – software programs that process information derived from biological systems such as DNA sequence, cell images and protein crystal structures. "A researcher can come to the site, look at a protein or related protein and get a clue to what proteins relate," said Tiffany Fischer of Dallas, a doctoral biochemistry student who is managing the project with Tsai.

Tsai said others have attempted to create a protein binding database before but never in easy-to-maneuver format with searchable data. That’s where Fischer, whose bachelor’s degree is in genetics, lends expertise. She oversees a team of students who glean research papers for the useful and accurate information to enter into the database.

Fischer said the team is targeting the most biologically significant, widely researched proteins and systems initially. "The MAPK system, for example, is important because it is a proposed cancer-causing pathway associated with cell death and cell proliferation," she said. "That has been widely documented, so by putting what is known in the database, a researcher can come to one place to find out all that is known about the interactions of this system."

Still, less than 500 structures of proteins that interact are known, she added, though there are about 20,000 in protein structure database. One can search the system by protein or by system to get complete descriptions of proteins and their interactions. Also included is reference information that points to the source of the information.

Adding to what’s already in the database, Tsai said, the project now will focus on inputting information on adaptor/adapter/adaptin proteins, and apoptosis (programmed cell death such as when the tissue between fingers of a fetus goes away) and tumor suppressors.

Contact: Dr. Jerry Tsai, +1-979-458-3377, jerrytsai@tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://tsailab.tamu.edu/BID
http://www.tamu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>