Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein: Getting to the Meat of this essential Element

31.07.2003


Living organisms operate with a variety of tens of thousands of protein structures and, though much research has been done on individual protein systems, little is understood about how different protein systems interact. Now an effort at Texas A&M University is bringing together all known information in an extensive, searchable internet site called Binding Interface Database.



"No one understands the rules of protein interaction," said Dr. Jerry Tsai, Texas Agricultural Experiment Station bioinformatics researcher. "So we are bringing all that is known together in one place."

After one year, the Binding Interface Database, has 245 interacting protein pairs with more than 1,500 "hot spots," or key interaction areas, documented.


"It’s like moving a sitting elephant," Tsai said. "It’s enormous. We spent about nine months just planning how it would be done." Tsai’s research is what scientists have dubbed "bioinformatics." That is, information technology applied to biology – software programs that process information derived from biological systems such as DNA sequence, cell images and protein crystal structures. "A researcher can come to the site, look at a protein or related protein and get a clue to what proteins relate," said Tiffany Fischer of Dallas, a doctoral biochemistry student who is managing the project with Tsai.

Tsai said others have attempted to create a protein binding database before but never in easy-to-maneuver format with searchable data. That’s where Fischer, whose bachelor’s degree is in genetics, lends expertise. She oversees a team of students who glean research papers for the useful and accurate information to enter into the database.

Fischer said the team is targeting the most biologically significant, widely researched proteins and systems initially. "The MAPK system, for example, is important because it is a proposed cancer-causing pathway associated with cell death and cell proliferation," she said. "That has been widely documented, so by putting what is known in the database, a researcher can come to one place to find out all that is known about the interactions of this system."

Still, less than 500 structures of proteins that interact are known, she added, though there are about 20,000 in protein structure database. One can search the system by protein or by system to get complete descriptions of proteins and their interactions. Also included is reference information that points to the source of the information.

Adding to what’s already in the database, Tsai said, the project now will focus on inputting information on adaptor/adapter/adaptin proteins, and apoptosis (programmed cell death such as when the tissue between fingers of a fetus goes away) and tumor suppressors.

Contact: Dr. Jerry Tsai, +1-979-458-3377, jerrytsai@tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://tsailab.tamu.edu/BID
http://www.tamu.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>