Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social mobility: Study shows bacteria seek each other out

30.07.2003


A study by Princeton University scientists has shown that bacteria actively move around their environments to form social organizations. The researchers placed bacteria in minute mazes and found that they sought each other out using chemical signals.



Biologists have become increasingly aware of social interactions among bacteria, but previously believed that clusters formed only when bacteria randomly landed somewhere, then multiplied into dense populations. The discovery that they actively move into gatherings underscores the importance of bacterial interactions and could eventually lead to new drugs that disrupt the congregating behavior of harmful germs, said Jeffry Stock, a professor of molecular biology and co-author of the paper.

"It makes sense, but it’s surprising that it’s as pervasive as it now seems to be," said Stock.


The researchers observed the gathering behavior in E. coli as well as in V. harveyi, a marine bacteria that glows when it achieves a high-density population. They found that when placed in mazes the bacteria congregated in small rooms and dead-end pathways. Once clustered, the V. harveyi turned on the genes that make them glow.

Biologists had previously believed that bacteria’s ability to move and follow chemical signals - a process called chemotaxis - was primarily a means of dispersing and seeking food. The new study shows that chemotaxis may also be important for facilitating cooperative behavior.

The work was a collaboration between Stock’s lab in biology and that of Robert Austin, a professor of physics. Emil Yuzbashyan, a graduate student in Austin’s noticed unusual clumping when he put E. coli into microscopically small mazes made of silicone. Biologists in Stock’s lab supplied mutant strains of bacteria that lacked genes necessary for sensing chemical signals and chemotaxis. They found that bacteria themselves emit a key chemical attractant and that those lacking the gene for the receptor that senses that attractant did not cluster as normal bacteria did.

Disrupting chemotaxis could be a route to attacking biofilms, a common type of bacterial interaction in which they form a colony that is resistant to antibiotic drugs and chemicals, the researchers said. Biofilms pose a common danger to patients receiving medical implants and cause trouble for ships that develop biofilms on their hulls.

Clustering also allows bacteria to perform a coordinated activity called quorum sensing in which they turn on certain genes only when they sense that they are part of a dense population. Some disease-causing bacteria are believed to rely on quorum sensing in mounting a successful infection. The V. harveyi in the experiment glowed as a result of quorum sensing after they gathered into a dense population.

"Our paper points out that you don’t necessarily need growth to achieve quorum sensing," said Peter Wolanin, a postdoctoral researcher in Stock’s lab. "The bacteria can actively seek each other out to engage in collective social behavior."

The behavior observed in the experiment also may have been a survival mechanism, said Sungsu Park, a postdoctoral researcher in Austin’s lab and first author of the paper. The research was conducted with the bacteria in a nutrient-depleted environment that resembles the natural conditions for bacteria much of the time. "The bacteria are chasing amino acids released from their own cell bodies during starvation conditions," said Park. "So by getting close to each other they have a better chance of getting nutrients."

The researchers also have developed a mathematical model that simulates the bacterial congregation, said Park. They plan further research to investigate the relation between bacterial behavior and the size and geometry of their physical environment.

| Princeton University
Further information:
http://www.princeton.edu

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>