Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social mobility: Study shows bacteria seek each other out

30.07.2003


A study by Princeton University scientists has shown that bacteria actively move around their environments to form social organizations. The researchers placed bacteria in minute mazes and found that they sought each other out using chemical signals.



Biologists have become increasingly aware of social interactions among bacteria, but previously believed that clusters formed only when bacteria randomly landed somewhere, then multiplied into dense populations. The discovery that they actively move into gatherings underscores the importance of bacterial interactions and could eventually lead to new drugs that disrupt the congregating behavior of harmful germs, said Jeffry Stock, a professor of molecular biology and co-author of the paper.

"It makes sense, but it’s surprising that it’s as pervasive as it now seems to be," said Stock.


The researchers observed the gathering behavior in E. coli as well as in V. harveyi, a marine bacteria that glows when it achieves a high-density population. They found that when placed in mazes the bacteria congregated in small rooms and dead-end pathways. Once clustered, the V. harveyi turned on the genes that make them glow.

Biologists had previously believed that bacteria’s ability to move and follow chemical signals - a process called chemotaxis - was primarily a means of dispersing and seeking food. The new study shows that chemotaxis may also be important for facilitating cooperative behavior.

The work was a collaboration between Stock’s lab in biology and that of Robert Austin, a professor of physics. Emil Yuzbashyan, a graduate student in Austin’s noticed unusual clumping when he put E. coli into microscopically small mazes made of silicone. Biologists in Stock’s lab supplied mutant strains of bacteria that lacked genes necessary for sensing chemical signals and chemotaxis. They found that bacteria themselves emit a key chemical attractant and that those lacking the gene for the receptor that senses that attractant did not cluster as normal bacteria did.

Disrupting chemotaxis could be a route to attacking biofilms, a common type of bacterial interaction in which they form a colony that is resistant to antibiotic drugs and chemicals, the researchers said. Biofilms pose a common danger to patients receiving medical implants and cause trouble for ships that develop biofilms on their hulls.

Clustering also allows bacteria to perform a coordinated activity called quorum sensing in which they turn on certain genes only when they sense that they are part of a dense population. Some disease-causing bacteria are believed to rely on quorum sensing in mounting a successful infection. The V. harveyi in the experiment glowed as a result of quorum sensing after they gathered into a dense population.

"Our paper points out that you don’t necessarily need growth to achieve quorum sensing," said Peter Wolanin, a postdoctoral researcher in Stock’s lab. "The bacteria can actively seek each other out to engage in collective social behavior."

The behavior observed in the experiment also may have been a survival mechanism, said Sungsu Park, a postdoctoral researcher in Austin’s lab and first author of the paper. The research was conducted with the bacteria in a nutrient-depleted environment that resembles the natural conditions for bacteria much of the time. "The bacteria are chasing amino acids released from their own cell bodies during starvation conditions," said Park. "So by getting close to each other they have a better chance of getting nutrients."

The researchers also have developed a mathematical model that simulates the bacterial congregation, said Park. They plan further research to investigate the relation between bacterial behavior and the size and geometry of their physical environment.

| Princeton University
Further information:
http://www.princeton.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>