Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt controls size of DNA structures, could improve gene therapy

30.07.2003


Georgia Tech Associate Professor Nicholas Hud (left) and Ph.D. student Christine Conwell -- along with Ph.D. student Igor Vilfan (not shown) -- have made a significant advance in controlling the size of DNA toroids. The finding could improve the efficiency of gene delivery for medical treatment and disease prevention
Georgia Tech Photo: Gary Meek


Scientists are seeking to understand the natural mechanism of DNA condensation into nanostructures - in particular, toroids. Toroids resemble tightly wound garden hoses. Shown here is a micrograph of a DNA toroid.
Image Copyright: Proceedings of the National Academy of Sciences


Researchers have found they can control the size of densely packed DNA structures by changing the salt concentration in solutions containing DNA. The finding could improve the efficiency of gene delivery for medical treatment and disease prevention.

Scientists are seeking to understand the natural mechanism of DNA condensation into nanostructures -- in particular, toroids, which look like tightly wound garden hoses. Densely packed DNA is nature’s efficient way of transporting genetic information, done particularly well by sperm cells and viruses.

Researchers want to mimic this process to improve DNA delivery for gene therapy and DNA-based vaccines, but they face many challenges in the laboratory where DNA in solution typically exists in an extended, rather than condensed state. Scientists have been able to cause DNA to condense into toroids by adding positively charged molecules to samples, but they have had difficulty finding the right molecules to achieve consistent, optimal toroid sizes of less than 50 nanometers.



However, scientists at Georgia Institute of Technology have made a significant advance in controlling the size of DNA toroids. In the July 18, 2003 online issue of the journal Proceedings of the National Academy of Sciences (PNAS), they report that reducing salt concentrations below normal laboratory solution levels shrinks both the diameter and thickness of DNA toroids. This finding resulted from a combined investigation of how static DNA loops and solution conditions might be used to control toroid dimensions.

"But even without static loops present, DNA produces smaller toroids if you reduce the salt concentration," said Nicholas Hud, an associate professor of biochemistry who is leading the study funded by the National Institutes of Health. "We found a systematic relationship between reducing salt and reducing toroid size. It is surprising that such a study was not previously done because salt concentration is such a fundamental parameter in studying molecules in solution, particularly such highly charged molecules as DNA."

Protocols for preparing DNA for delivery to cells often call for salt conditions that differ from those DNA encounters when injected into body tissues, Hud noted. "If you change the salt conditions during DNA delivery, it will change particle size and have a dramatic effect on the efficiency of gene delivery," he added. "This could explain why some researchers aren’t getting as good a rate of transfection (the incorporation of DNA into a cell) as they should."

In the study reported in PNAS, Hud and his Ph.D. students Christine Conwell and Igor Vilfan also describe using the positively charged, inorganic molecule hexammine cobalt (III) to condense a DNA molecule containing a specially designed sequence. The synthetic sequence causes a region of the DNA molecule to bend into two loops of 25 nanometers each in diameter. In other words, these nanoscale loops were "programmed" into the DNA sequence.

Hud theorized years ago that the spontaneous formation of loops along DNA is the first step necessary for toroid formation, and a key factor in determining toroid size, he said.

"Now, we’ve made these loops always present there," Hud explained. "When we add positively charged molecules that bind to the DNA, the loops provide a built-in starting point for DNA condensation. The loops also act as a template upon which the rest of the DNA rolls up to form a toroid. The toroid forms because the positively charged molecules make DNA want to stick to itself…. and we found that our static loops reduce DNA particle size and tighten particle distribution."

Hud describes as serendipitous the additional finding that lowering the salt concentration in DNA solution also reduces the size of toroids. Together, these results helped Hud’s team develop models for DNA toroid formation. The researchers’ data can now serve as a test for theoretical models of DNA condensation, they say.

Meanwhile, Hud’s team is exploring how the order in which they add salts to DNA solutions affects particle size and shape -- whether salts should be added before or after the DNA condensation process is prompted by positively charged molecules.

"By studying the fundamental process of DNA condensation we hope to determine all the factors that help produce particles of smaller size and narrower size distribution. The combined effects of these factors should help us to produce the optimal particles for gene delivery," Hud added.

He believes a systematic approach to the high-stakes goal of developing an efficient, artificial gene delivery method will pay off.

"There have been a lot of attempts to improve DNA delivery by simply mixing molecules and empirically testing to determine their efficiency," Hud said. "But DNA condensates are difficult to understand…. We might be missing something in our information about what’s happening from the lab bench to the delivery of DNA to cells. We want to understand the nature of DNA particles all the way from the test tube to the cell."

Technical Contact: Nick Hud, +1-404-385-1162, hud@chemistry.gatech.edu

Jane Sanders | Georgia Institute of Technology
Further information:
http://gtresearchnews.gatech.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>