Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene controls leaf form

29.07.2003


A single gene, called PHANTASTICA (PHAN), controls whether a plant makes feathery leaves like a tomato or umbrella-like leaves like Oxalis. The same mechanism is shared by a wide group of flowering plants.



"It’s a very surprising finding, that modifying one gene in the tomato alters the leaf from one form to another," said Neelima Sinha, a professor of plant biology at UC Davis who is senior author on the paper.

Plant leaves fall into two main groups: simple, single-blade leaves and compound leaves with multiple leaflets. Compound leaves have either a series of alternate leaflets on each side of a stem, like a tomato, or leaflets arrayed in a circle around a point at the end of the stalk.


Sinha and graduate student Minsung Kim from UC Davis, with Sheila McCormick from the U.S. Department of Agriculture’s Plant Gene Expression Center in Albany, Calif., and Marja Timmermans from the Cold Spring Harbor Laboratory in New York, created tomato plants genetically manipulated so that PHAN was turned down or turned off.

Low-PHAN tomato plants made palmate, umbrella-like leaves or needles with no leaflets at all. In plants with normal leaves, PHAN was switched on throughout the upper surface of the leaf. In plants with palmate leaves, PHAN expression was reduced to the tip of the leaf. Plants with needle-shaped leaves showed no PHAN expression at all.

The results showed that when PHAN is switched on in part of the leaf, it creates an area where leaflets can form. The size and shape of this domain determines the shape of the leaf.

Sinha and colleagues found similar patterns of PHAN gene expression and leaf shape in live specimens of other plants from the UC Davis Botanical Conservatory and over 500 dried plants from the UC Davis Herbarium, showing that the same mechanism is used to control leaf shape even in distantly related flowering plants. That suggests that there may be a limited number of ways to change the shape of a leaf.

The conservatory and the herbarium were "incredibly valuable" for this kind of work, Sinha said. "We can look at thousands of specimens in the herbarium. It’s an amazing resource."

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>