Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover method of postponing labor in mice

29.07.2003


Researchers at UT Southwestern Medical Center at Dallas have discovered a way to inhibit a biochemical process that accompanies labor and to postpone delivery for one to two days in pregnant mice.

"Since the biochemical steps associated with labor are likely the same in both mice and humans, a similar treatment might someday help prevent pre-term labor in women," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology and senior author of the study, published online this week in Proceedings of the National Academy of Sciences.

The researchers administered the drug trichostatin A, which affects the function of receptors for progesterone, a hormone that prevents the uterus from contracting throughout most of pregnancy. The drug effectively delayed the start of labor by allowing progesterone to continue functioning. The postponement of labor was significant because mice have a gestation period of only 19 days.



In humans, progesterone and its receptors are maintained at elevated levels in the uterus throughout pregnancy and after labor begins.

"We postulated that labor is caused by a number of factors that prevent progesterone from continuing to act to maintain uterine quiescence," Dr. Mendelson said.

In this study, the researchers analyzed a group of proteins -- called co-activators -- that allows progesterone receptors to function. They examined tissues taken from the uteruses of women in labor (undergoing Caesarean section) and those not in labor.

"We found that certain co-activators decrease very markedly in labor," she said. "We then extended our research to animal models because we wanted to look at the changes that occur throughout pregnancy. We chose to use the mouse, which we found to manifest the same types of changes in these activators at the end of pregnancy and during labor as humans."

Co-activators have the capacity to alter chromatin structure around progesterone-responsive genes by increasing the acetylation of histones. The genes are active when the histones are acetylated and chromatin – the genetic material of the nucleus – is open to progesterone receptors, said Dr. Mendelson.

"At the end of pregnancy and during the beginning of labor in mice and humans, there is a marked decrease in the acetylation of histones. This causes the chromatin structure to become closed, so the receptors can’t act properly," she said.

The researchers administered trichostatin A, a histone deacetylase inhibitor, to pregnant mice late in gestation. This increased histone acetylation in the uterus and prevented pre-term labor.

"We were able to keep the chromatin ’open’ so the progesterone receptors could continue to function," said Dr. Mendelson.

The researcher said the discovery could be of use in preventing pre-term labor in women.

"Since pre-term birth – which can have devastating immediate and lifelong consequences – affects more than 460,000 infants in the United States each year, our findings could impact the care of pregnant women and the well-being of their babies in the future," Dr. Mendelson said.

Amy Shields | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>