Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Have Giant Deer Become Extinct?

25.07.2003


The scientist from the Institute of Plants and Animals Ecology, Russian Academy of Sciences (Ural Branch), has made a description of the giant dear remains, found in the Ural, and has determined their age. Giant deer Megaloceros giganteus originated as a species in the preglacial epoch, lived through the glaciation period and died out about 8-9 thousand years ago after the climate had become warmer. The remains will help to investigate how the giant dear lived and why this species disappeared. The research has been carried out with the help of the Russian Foundation for Basic Research grants 02-04-49431 and ‘The evolution of the mammalian fauna and flora in Western, Central and Eastern Europe during the Pleistocene-Holocene transition (25-10 kyr B.R.)’.

About ten thousand years ago when the glaciation period was already over, the giant or the so- called big-horned deer, contemporary of the mammoth and the wooly rhinoceros, still inhabited the Eurasian plains. They were real giants among ungulate animals: their horns with big blades, which resembled those of the fallow-deer or the elk, reached up to four meters in width. The deer used to pasture on humid meadows and frequently fell a prey to primeval hunters. Then the species has become extinct. Modern scientists are still investigating possible reasons for the giant deer disappearance.

P. A. Kosintsev, a researcher from Yekaterinburg, has studied the remains of the giant deer, found during the last decades in the Middle and South Ural. With the help of A. Lister and A. Stuart, British colleagues from the Natural Environment Research Council (NERC) , P. A. Kosintsev has determined the age of the findings. To this end the scientist used the radiocarbon analysis method with the accelerative mass-spectrometry. It turned out that the animals, the bones of which were dated, perished during the periods when the climate was changing: warm periods were being replaced by the cold ones and vice versa. Although the glaciation period ended about ten thousand years ago, some long periods of the climate cooling down and warming up took place repeatedly. It is very likely that these climatic changes caused the extinction of the giant deer species. An indirect indication that the climatic changes affected the disappearance of the species provides the fact that the bones of the deer were found in the same horizons with the remains of a variety of animals, this proves easy adaptability of the species to various surrounding animal species.



The giant deer bones were first found by the scientists at the end of the 18-th – beginning of the 19-th century. In particular, the majority of the skeletons were found in the peatbogs of Ireland. In 1803 Johann Blumenbach, well-known German anatomist and anthropologist from Go´´ttingen, described a new zoolite ungulate species based on the fossils and called this species “big horns”. Later on the bones were studied by a famous Englishman Richard Owen and by other scientists. The giant deer bones were found in Russia as well: the researchers frequently extracted them from the garbage at the sites of the Stone Age tribes. The giant deer remains were even found in the south of Russia, in the Crimea and in the Northern Caucasia. Some intact skeletons were excavated in Ryazan and Sverdlovsk regions. However, the entire history of the giant deer species has not been reconstructed so far and any finding is valuable to obtain more information about the animals and their habitat. The scientists need to determine the timeframes when the species inhabited and when it became extinct and to study the climate, fauna and flora of that period.

In the Ural the paleontologists have to collect the fossilized deer remains by small pieces. A small part of a scull was found in the pond nearby a town of Nevjansk, several fragments of the jaws were discovered in the grottos of Sikiayz –Tamak and Kulmetovsky, Chelyabinsk region, and in Bobyljok, Sverdlovsk region. In the peatbog of Shigirsk, Sverdlovsk region, there was found a dagger, which dated back to primitive times: it turned out that the dagger was made of the deer horns.

Sergey Komarov | alfa
Further information:
http://www.ipae.uran.ru

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>