Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Have Giant Deer Become Extinct?

25.07.2003


The scientist from the Institute of Plants and Animals Ecology, Russian Academy of Sciences (Ural Branch), has made a description of the giant dear remains, found in the Ural, and has determined their age. Giant deer Megaloceros giganteus originated as a species in the preglacial epoch, lived through the glaciation period and died out about 8-9 thousand years ago after the climate had become warmer. The remains will help to investigate how the giant dear lived and why this species disappeared. The research has been carried out with the help of the Russian Foundation for Basic Research grants 02-04-49431 and ‘The evolution of the mammalian fauna and flora in Western, Central and Eastern Europe during the Pleistocene-Holocene transition (25-10 kyr B.R.)’.

About ten thousand years ago when the glaciation period was already over, the giant or the so- called big-horned deer, contemporary of the mammoth and the wooly rhinoceros, still inhabited the Eurasian plains. They were real giants among ungulate animals: their horns with big blades, which resembled those of the fallow-deer or the elk, reached up to four meters in width. The deer used to pasture on humid meadows and frequently fell a prey to primeval hunters. Then the species has become extinct. Modern scientists are still investigating possible reasons for the giant deer disappearance.

P. A. Kosintsev, a researcher from Yekaterinburg, has studied the remains of the giant deer, found during the last decades in the Middle and South Ural. With the help of A. Lister and A. Stuart, British colleagues from the Natural Environment Research Council (NERC) , P. A. Kosintsev has determined the age of the findings. To this end the scientist used the radiocarbon analysis method with the accelerative mass-spectrometry. It turned out that the animals, the bones of which were dated, perished during the periods when the climate was changing: warm periods were being replaced by the cold ones and vice versa. Although the glaciation period ended about ten thousand years ago, some long periods of the climate cooling down and warming up took place repeatedly. It is very likely that these climatic changes caused the extinction of the giant deer species. An indirect indication that the climatic changes affected the disappearance of the species provides the fact that the bones of the deer were found in the same horizons with the remains of a variety of animals, this proves easy adaptability of the species to various surrounding animal species.



The giant deer bones were first found by the scientists at the end of the 18-th – beginning of the 19-th century. In particular, the majority of the skeletons were found in the peatbogs of Ireland. In 1803 Johann Blumenbach, well-known German anatomist and anthropologist from Go´´ttingen, described a new zoolite ungulate species based on the fossils and called this species “big horns”. Later on the bones were studied by a famous Englishman Richard Owen and by other scientists. The giant deer bones were found in Russia as well: the researchers frequently extracted them from the garbage at the sites of the Stone Age tribes. The giant deer remains were even found in the south of Russia, in the Crimea and in the Northern Caucasia. Some intact skeletons were excavated in Ryazan and Sverdlovsk regions. However, the entire history of the giant deer species has not been reconstructed so far and any finding is valuable to obtain more information about the animals and their habitat. The scientists need to determine the timeframes when the species inhabited and when it became extinct and to study the climate, fauna and flora of that period.

In the Ural the paleontologists have to collect the fossilized deer remains by small pieces. A small part of a scull was found in the pond nearby a town of Nevjansk, several fragments of the jaws were discovered in the grottos of Sikiayz –Tamak and Kulmetovsky, Chelyabinsk region, and in Bobyljok, Sverdlovsk region. In the peatbog of Shigirsk, Sverdlovsk region, there was found a dagger, which dated back to primitive times: it turned out that the dagger was made of the deer horns.

Sergey Komarov | alfa
Further information:
http://www.ipae.uran.ru

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>