Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Have Giant Deer Become Extinct?

25.07.2003


The scientist from the Institute of Plants and Animals Ecology, Russian Academy of Sciences (Ural Branch), has made a description of the giant dear remains, found in the Ural, and has determined their age. Giant deer Megaloceros giganteus originated as a species in the preglacial epoch, lived through the glaciation period and died out about 8-9 thousand years ago after the climate had become warmer. The remains will help to investigate how the giant dear lived and why this species disappeared. The research has been carried out with the help of the Russian Foundation for Basic Research grants 02-04-49431 and ‘The evolution of the mammalian fauna and flora in Western, Central and Eastern Europe during the Pleistocene-Holocene transition (25-10 kyr B.R.)’.

About ten thousand years ago when the glaciation period was already over, the giant or the so- called big-horned deer, contemporary of the mammoth and the wooly rhinoceros, still inhabited the Eurasian plains. They were real giants among ungulate animals: their horns with big blades, which resembled those of the fallow-deer or the elk, reached up to four meters in width. The deer used to pasture on humid meadows and frequently fell a prey to primeval hunters. Then the species has become extinct. Modern scientists are still investigating possible reasons for the giant deer disappearance.

P. A. Kosintsev, a researcher from Yekaterinburg, has studied the remains of the giant deer, found during the last decades in the Middle and South Ural. With the help of A. Lister and A. Stuart, British colleagues from the Natural Environment Research Council (NERC) , P. A. Kosintsev has determined the age of the findings. To this end the scientist used the radiocarbon analysis method with the accelerative mass-spectrometry. It turned out that the animals, the bones of which were dated, perished during the periods when the climate was changing: warm periods were being replaced by the cold ones and vice versa. Although the glaciation period ended about ten thousand years ago, some long periods of the climate cooling down and warming up took place repeatedly. It is very likely that these climatic changes caused the extinction of the giant deer species. An indirect indication that the climatic changes affected the disappearance of the species provides the fact that the bones of the deer were found in the same horizons with the remains of a variety of animals, this proves easy adaptability of the species to various surrounding animal species.



The giant deer bones were first found by the scientists at the end of the 18-th – beginning of the 19-th century. In particular, the majority of the skeletons were found in the peatbogs of Ireland. In 1803 Johann Blumenbach, well-known German anatomist and anthropologist from Go´´ttingen, described a new zoolite ungulate species based on the fossils and called this species “big horns”. Later on the bones were studied by a famous Englishman Richard Owen and by other scientists. The giant deer bones were found in Russia as well: the researchers frequently extracted them from the garbage at the sites of the Stone Age tribes. The giant deer remains were even found in the south of Russia, in the Crimea and in the Northern Caucasia. Some intact skeletons were excavated in Ryazan and Sverdlovsk regions. However, the entire history of the giant deer species has not been reconstructed so far and any finding is valuable to obtain more information about the animals and their habitat. The scientists need to determine the timeframes when the species inhabited and when it became extinct and to study the climate, fauna and flora of that period.

In the Ural the paleontologists have to collect the fossilized deer remains by small pieces. A small part of a scull was found in the pond nearby a town of Nevjansk, several fragments of the jaws were discovered in the grottos of Sikiayz –Tamak and Kulmetovsky, Chelyabinsk region, and in Bobyljok, Sverdlovsk region. In the peatbog of Shigirsk, Sverdlovsk region, there was found a dagger, which dated back to primitive times: it turned out that the dagger was made of the deer horns.

Sergey Komarov | alfa
Further information:
http://www.ipae.uran.ru

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>