Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen withdrawal results in bone loss, research shows that the Estrogen Receptor has a fundamental role

25.07.2003


Professor Lance Lanyon, Principal of The Royal Veterinary College, Karla Lee, Helen Jessop, Rosemary Suswillo, Gul Zaman from the Department of Basic Sciences at The Royal Veterinary College have shown in their research that the Estrogen Receptor has a fundamental role in bone cells by adjusting the bone architecture to match the loads individuals place on them. Their paper is published in the latest edition of Nature.



The strain imposed by mechanical loading on bone tissue normally stimulates a response by bone cells that results in an adjustment to bone architecture and enables the bone to withstand reasonable loads. This research centred on why this process should become less effective in some 50 per cent of post-menopausal women who suffered fractures as a result.

This research shows why estrogen withdrawal results in bone loss – the number of Estrogen Receptors is reduced by the estrogen levels. When estrogen levels decline (as at menopause) ER levels also decline to the extent that they limit the bone cells’ adaptive responses to load bearing thus producing an effective environment of disuse or underuse which permits bone loss.


Previous research has concentrated on the effects of estrogen on various processes assuming the Estrogen Receptor is more or less constant. One of the Estrogen Receptor’s possible early reproductive functions may be to induce skeletal remodelling to release calcium for egg-laying or embyonic delvelopment.

Professor Lanyon says: "the ER is amenable to therapy and there may be a way either to regulate it in bone or to affect its activity. For instance Hormone Replacement Therapy will restore the ER number and thus eliminate the restriction on the loading-related response."

Virginia Fisher | alfa
Further information:
http://www.rvc.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>