Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound class found to trigger changes in cell garbage can

25.07.2003


Researchers have discovered a novel class of compounds that affects the cell’s garbage disposal system which degrades proteins and opens a window for understanding a vital cell function as well as for treating heart disease and cancer.



The distinctive mechanisms of these compounds are reported in the July 29 issue of Biochemistry and online earlier this month by Dr. Michael Simons, professor of medicine and of pharmacology and toxicology at Dartmouth Medical School and head of cardiology at Dartmouth-Hitchcock Medical Center, with colleagues from Dartmouth and the University of Texas.

Just as cells produce proteins, they must also get rid of those they no longer need. Structures called proteasomes chew up proteins made within the cell -- including viruses and other parasites -- that are targeted for destruction.


Proteasomes are a complex of enzymes with a cylinder core and a lid on the top and bottom. "The proteins come in and are digested like a big garbage can." Simons said. Proteasomes are an attractive target for drug development because manipulating them to prevent or provoke degradation of a particular protein affects most cell activities.

In studying compounds that promote the formation of new blood vessels, (angiogenesis), Simons and his colleagues found these compounds constituted a new class of inhibitor that changes the shape of the proteasome. "This is a completely different class of proteasome inhibitors with unusual mechanisms," Simons said.

Generally, proteasome inhibitors interact with an active site of the protein-digesting enzymes on chains inside the proteasome cylinder. The new-found class, proline/arginine-rich peptides, instead bind to the outside of the proteasome cylinder, triggering it to change shape in a way that limits the proteins they can ingest. The effects appear in all proteasomes, from yeast to humans.

Normal proteasomes look like regular circles; when the researchers add the peptide, the proteasome takes a dumbbell shape. Substances cannot easily get into the proteasome and its activity range is restricted. As a result, it will destroy only a small number of proteins.

"So this is a new mechanism of action, a new class of inhibitors and has interesting therapeutic implications," Simons said.

Since the compounds do not act on the active site of an enzyme, but on its shape, the effects are reversible, meaning that treatment options are controllable. Moreover, there is intriguing therapeutic potential for both heart disease and cancer.

These peptides are especially powerful agents for inducing vessel growth and their angiogenic activity correlates with their ability to interact with certain proteasomes and change their shapes. One result is that they turn off degradation of master switch genes that activate several different angiogenic cascades.

These peptides also prevent degradation of a molecule that normally inhibits activity of nuclear factor kappa B that controls a number of cell processes including growth and inflammation. High levels of the molecule, IkB, impede cell growth, which has implications for use against cancers. Simons speculates that by changing peptide structure, the dual effects of stimulating and stopping growth can be separated.

The findings provide insights into proteasome functions. This peptide appears to regulate how proteasomes interact with the proteins destined for obliteration. Proteasomes are known to change shape when they interact with an inhibitor, but "this is a very unusual shape change; it does not fit any known patterns," Simons added.

Now the researchers are detailing the functions of this naturally occurring immune response peptide . It was originally isolated form pig intestines for use in healing wounds because of its multiple roles as an agent that stimulates vessel growth, inhibits inflammatory responses and kills bacteria.

Coauthors include Mark Post, visiting associate professor of medicine at DMS, as well as M. Maria Gaczynska and Pawel A. Osmulski, of the University of Texas Health Science Center at San Antonio and Youhe Gao of Beijing.

DMS Communications | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>