Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity Depends on Historical Plant and Animal Relationships

25.07.2003


Some thirty million species now live on Earth, but their spatial distribution is highly uneven. Biologists since Darwin have been asking why. Now, scientists funded by the National Science Foundation (NSF), have discovered part of the answer: how plant and animal communities originally assembled is a predictor of future biodiversity and ecosystem productivity.


The experiment using microorganisms including the ciliates shown here indicates that historical events produce a remarkable variety of productivity-biodiversity relationships--a finding that would be difficult to reveal in natural ecosystems composed of large, slowly responding macroorganisms.

Photo Credit: Wilhelm Foissner, Andreas Zankl, University of Salzburg, Austria



"Despite its importance, species diversity has proven difficult to understand, in large part because multiple processes operating at various scales interact to influence diversity patterns," said biologist Tadashi Fukami of the University of Tennessee at Knoxville, lead author of a paper on the subject published in the July 24th issue of the journal Nature. "On evolutionary scales, species diversity is a result of speciation and extinction. But evolutionary processes are variable across space, interactive over time, and consequently, hard to identify. On ecological scales, diversity is a result of community assembly, how species join ecological communities over time."

Fukami and co-author Peter Morin of Rutgers University in New Jersey attempt to provide a novel ecological perspective from which to view diversity patterns. They argue that we can better understand diversity by considering how the history of community assembly interacts with other ecological variables to affect diversity.


Their paper addresses a topic of central importance in ecology, specifically the cause of different relationships between productivity and biodiversity observed in natural ecosystems. Ecologists define productivity broadly as the amount of energy available for ecosystem development in a given location. In this experiment, productivity was manipulated by changing the nutrient concentration of growth medium in ecological communities of microorganisms housed in a laboratory.

"Fukami and Morin’s study adds an important, new piece to the ecological puzzle that relates ecosystem productivity to species diversity," said Saran Twombly, program director in NSF’s division of environmental biology. "The sequence of species used to create a community has a large effect on the productivity-diversity relationship. This novel result contributes substantially to our understanding of community ecology."

We know that the relationship between productivity and biodiversity takes various forms in nature, presenting a difficult challenge in understanding biodiversity patterns, said Fukami. "Using a rigorous experimental approach, we show in this paper that productivity-biodiversity relationships depend critically on the history of community assembly, in particular on the specific sequence of species arrival from a regional pool of colonists." The results argue that community assembly processes must be considered along with resource use, disturbance, and other factors that determine the ultimate form of productivity-diversity relationships. A key point is that these fundamental patterns are unlikely to have a single common explanation. Although this study was not based on a particular ecosystem, the study shows that historical effects are possible and may explain patterns observed in ecosystems.

These findings will be of broad interest to ecologists, environmental scientists, ecological economists, and others interested in the causes of biodiversity patterns, Fukami believes. "Scientific understanding of how biodiversity responds to productivity is important to the conservation and management of natural ecosystems that are experiencing nutrient enrichment by human activities [such as increased input of phosphorus and nitrogen into lakes, ponds, and estuaries]," said Fukami.

Cheryl Dybas | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa
http://www.nsf.gov/sbe/srs/stats.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>