Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity Depends on Historical Plant and Animal Relationships

25.07.2003


Some thirty million species now live on Earth, but their spatial distribution is highly uneven. Biologists since Darwin have been asking why. Now, scientists funded by the National Science Foundation (NSF), have discovered part of the answer: how plant and animal communities originally assembled is a predictor of future biodiversity and ecosystem productivity.


The experiment using microorganisms including the ciliates shown here indicates that historical events produce a remarkable variety of productivity-biodiversity relationships--a finding that would be difficult to reveal in natural ecosystems composed of large, slowly responding macroorganisms.

Photo Credit: Wilhelm Foissner, Andreas Zankl, University of Salzburg, Austria



"Despite its importance, species diversity has proven difficult to understand, in large part because multiple processes operating at various scales interact to influence diversity patterns," said biologist Tadashi Fukami of the University of Tennessee at Knoxville, lead author of a paper on the subject published in the July 24th issue of the journal Nature. "On evolutionary scales, species diversity is a result of speciation and extinction. But evolutionary processes are variable across space, interactive over time, and consequently, hard to identify. On ecological scales, diversity is a result of community assembly, how species join ecological communities over time."

Fukami and co-author Peter Morin of Rutgers University in New Jersey attempt to provide a novel ecological perspective from which to view diversity patterns. They argue that we can better understand diversity by considering how the history of community assembly interacts with other ecological variables to affect diversity.


Their paper addresses a topic of central importance in ecology, specifically the cause of different relationships between productivity and biodiversity observed in natural ecosystems. Ecologists define productivity broadly as the amount of energy available for ecosystem development in a given location. In this experiment, productivity was manipulated by changing the nutrient concentration of growth medium in ecological communities of microorganisms housed in a laboratory.

"Fukami and Morin’s study adds an important, new piece to the ecological puzzle that relates ecosystem productivity to species diversity," said Saran Twombly, program director in NSF’s division of environmental biology. "The sequence of species used to create a community has a large effect on the productivity-diversity relationship. This novel result contributes substantially to our understanding of community ecology."

We know that the relationship between productivity and biodiversity takes various forms in nature, presenting a difficult challenge in understanding biodiversity patterns, said Fukami. "Using a rigorous experimental approach, we show in this paper that productivity-biodiversity relationships depend critically on the history of community assembly, in particular on the specific sequence of species arrival from a regional pool of colonists." The results argue that community assembly processes must be considered along with resource use, disturbance, and other factors that determine the ultimate form of productivity-diversity relationships. A key point is that these fundamental patterns are unlikely to have a single common explanation. Although this study was not based on a particular ecosystem, the study shows that historical effects are possible and may explain patterns observed in ecosystems.

These findings will be of broad interest to ecologists, environmental scientists, ecological economists, and others interested in the causes of biodiversity patterns, Fukami believes. "Scientific understanding of how biodiversity responds to productivity is important to the conservation and management of natural ecosystems that are experiencing nutrient enrichment by human activities [such as increased input of phosphorus and nitrogen into lakes, ponds, and estuaries]," said Fukami.

Cheryl Dybas | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa
http://www.nsf.gov/sbe/srs/stats.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>