Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biodiversity Depends on Historical Plant and Animal Relationships


Some thirty million species now live on Earth, but their spatial distribution is highly uneven. Biologists since Darwin have been asking why. Now, scientists funded by the National Science Foundation (NSF), have discovered part of the answer: how plant and animal communities originally assembled is a predictor of future biodiversity and ecosystem productivity.

The experiment using microorganisms including the ciliates shown here indicates that historical events produce a remarkable variety of productivity-biodiversity relationships--a finding that would be difficult to reveal in natural ecosystems composed of large, slowly responding macroorganisms.

Photo Credit: Wilhelm Foissner, Andreas Zankl, University of Salzburg, Austria

"Despite its importance, species diversity has proven difficult to understand, in large part because multiple processes operating at various scales interact to influence diversity patterns," said biologist Tadashi Fukami of the University of Tennessee at Knoxville, lead author of a paper on the subject published in the July 24th issue of the journal Nature. "On evolutionary scales, species diversity is a result of speciation and extinction. But evolutionary processes are variable across space, interactive over time, and consequently, hard to identify. On ecological scales, diversity is a result of community assembly, how species join ecological communities over time."

Fukami and co-author Peter Morin of Rutgers University in New Jersey attempt to provide a novel ecological perspective from which to view diversity patterns. They argue that we can better understand diversity by considering how the history of community assembly interacts with other ecological variables to affect diversity.

Their paper addresses a topic of central importance in ecology, specifically the cause of different relationships between productivity and biodiversity observed in natural ecosystems. Ecologists define productivity broadly as the amount of energy available for ecosystem development in a given location. In this experiment, productivity was manipulated by changing the nutrient concentration of growth medium in ecological communities of microorganisms housed in a laboratory.

"Fukami and Morin’s study adds an important, new piece to the ecological puzzle that relates ecosystem productivity to species diversity," said Saran Twombly, program director in NSF’s division of environmental biology. "The sequence of species used to create a community has a large effect on the productivity-diversity relationship. This novel result contributes substantially to our understanding of community ecology."

We know that the relationship between productivity and biodiversity takes various forms in nature, presenting a difficult challenge in understanding biodiversity patterns, said Fukami. "Using a rigorous experimental approach, we show in this paper that productivity-biodiversity relationships depend critically on the history of community assembly, in particular on the specific sequence of species arrival from a regional pool of colonists." The results argue that community assembly processes must be considered along with resource use, disturbance, and other factors that determine the ultimate form of productivity-diversity relationships. A key point is that these fundamental patterns are unlikely to have a single common explanation. Although this study was not based on a particular ecosystem, the study shows that historical effects are possible and may explain patterns observed in ecosystems.

These findings will be of broad interest to ecologists, environmental scientists, ecological economists, and others interested in the causes of biodiversity patterns, Fukami believes. "Scientific understanding of how biodiversity responds to productivity is important to the conservation and management of natural ecosystems that are experiencing nutrient enrichment by human activities [such as increased input of phosphorus and nitrogen into lakes, ponds, and estuaries]," said Fukami.

Cheryl Dybas | National Science Foundation
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>