Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models show gene flow from crops threatens wild plants

23.07.2003


In a river valley just southwest of Mexico City stands a small patch of teosinte - a wild, weedy grass thought to be the ancient ancestor of corn. As a gentle breeze blows gene-carrying pollen from a nearby crop of maize to its wild relative, the genetic integrity and even survival of this ancient plant and others could be jeopardized, according to new mathematical models.

The models, described in the July 23 online edition of the Proceedings of the Royal Society of London and developed by scientists at the University of Wisconsin-Madison and the University of Minnesota-St. Paul, show that genes from crops rapidly can take over those in related wild plants. The end result, say the researchers, could be major changes in the genetic make-up of wild plants, decreases in their population size and the permanent loss of natural traits that could improve crop health.

Although gene flow from crops to wild relatives has occurred ever since humans started farming, few studies before the 1980s examined the effects of this evolutionary process in a scientific manner. Most of the people concerned up until then were farmers, not researchers, says Ralph Haygood, a UW-Madison postdoctoral fellow and lead author of the paper.



But, as genetic engineering developed and emerged as both a biological and political issue, gene flow from crops containing transgenes - genetic information from other species that’s artificially inserted - to wild plants gained more scientific attention.

"Most of the concern about crop-wild gene flow," says Haygood, "is driven by concern about transgene escape," the idea that these artificially inserted genes in a crop plant can leak into the genomes of wild relatives. According to Haygood, growers around the world have planted 145 million acres of transgenic crops.

Conserving the genetic integrity of wild plants, explains Haygood, is important for two reasons: protecting the survival of the plants themselves and maintaining their repository of advantageous traits. These traits, he adds, can be used to improve crop health: "The fact is that most genes for crop improvement have come from wild relatives of those same crops."

To begin to understand the effects of gene flow from crop to wild plant populations, Haygood and his colleagues Anthony Ives from UW-Madison and David Andow from UM-St. Paul, developed mathematical models based on fundamental principles of population genetics.

"The key to the models," says Ives, "is that they summarize fundamental properties of evolutionary change. They show what is likely to happen."

Specifically, the models examine how rates of pollen flow and how the selective effects of crop genes on wild plants alter two evolutionary processes: genetic assimilation, wherein crop genes replace genes in wild populations, and demographic swamping, wherein wild populations shrink in size because crop-wild hybrids are less fertile.

"Genetic assimilation and demographic swamping could change a wild plant in some way that might be important for its survival in some habitats or for other organisms that depend on them for their survival," says Haygood. "The potential ramifications are huge and diverse."

The research team starts with a simple model, where a wild population of large and constant size receives pollen from a crop that differs genetically by only one gene. They then add complexity, or, as Ives says, "more realism." That is, they consider a crop that is more different genetically and a wild population that is small or varies in size.

The researchers are quick to point out that the models do not distinguish between crops developed through traditional breeding and genetic engineering. "How the genes get in the crops doesn’t matter," explains Haygood. "What’s important is what they do once they’re there."

In both the basic and expanded models, the researchers find that crop genes rapidly can take over wild populations and, sometimes, just a small increase in the rate of pollen flow can make a big difference in the spread of a crop gene. When this happens, says, Ives, "There’s no going back. It’s irreversible."

The findings, explains Haygood, show that few conditions are needed to enable genetic assimilation and demographic swamping. "You don’t need high rates of pollen flow or strongly favored traits," he says. "Crop genes, even fairly deleterious ones, can easily become common in wild populations within 10 to 20 generations."

At the same time, the combined forces of these two processes on the wild populations can change their genetic make-up in unfavorable ways and drastically shrink their population size, leading to what evolutionary biologists call a "migrational meltdown."

Although the models look at gene flow from a crop plant to a wild relative, the researchers say that the models probably also could apply to gene flow from a commercial to a landrace crop raised each season from the previous year’s seed. But they add that more investigation is needed.

The goal of the gene flow models, explain the researchers, is to provide qualitative insight that they hope will enhance the public dialogue on gene flow from crop to wild plants.

"Gene flow from crops to wild relatives is one of a host of environmental issues that humans must deal with," says Haygood. "These models are a resource that can contribute to the discussion."

Contact:

Emily Carlson +1-608-262-9772, emilycarlson@wisc.edu
Ralph Haygood, +1-608-262-9226, rhaygood@wisc.edu
Tony Ives, +1-608-262-1519, arives@wisc.edu

Ralph Haygood | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>