Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models show gene flow from crops threatens wild plants

23.07.2003


In a river valley just southwest of Mexico City stands a small patch of teosinte - a wild, weedy grass thought to be the ancient ancestor of corn. As a gentle breeze blows gene-carrying pollen from a nearby crop of maize to its wild relative, the genetic integrity and even survival of this ancient plant and others could be jeopardized, according to new mathematical models.

The models, described in the July 23 online edition of the Proceedings of the Royal Society of London and developed by scientists at the University of Wisconsin-Madison and the University of Minnesota-St. Paul, show that genes from crops rapidly can take over those in related wild plants. The end result, say the researchers, could be major changes in the genetic make-up of wild plants, decreases in their population size and the permanent loss of natural traits that could improve crop health.

Although gene flow from crops to wild relatives has occurred ever since humans started farming, few studies before the 1980s examined the effects of this evolutionary process in a scientific manner. Most of the people concerned up until then were farmers, not researchers, says Ralph Haygood, a UW-Madison postdoctoral fellow and lead author of the paper.



But, as genetic engineering developed and emerged as both a biological and political issue, gene flow from crops containing transgenes - genetic information from other species that’s artificially inserted - to wild plants gained more scientific attention.

"Most of the concern about crop-wild gene flow," says Haygood, "is driven by concern about transgene escape," the idea that these artificially inserted genes in a crop plant can leak into the genomes of wild relatives. According to Haygood, growers around the world have planted 145 million acres of transgenic crops.

Conserving the genetic integrity of wild plants, explains Haygood, is important for two reasons: protecting the survival of the plants themselves and maintaining their repository of advantageous traits. These traits, he adds, can be used to improve crop health: "The fact is that most genes for crop improvement have come from wild relatives of those same crops."

To begin to understand the effects of gene flow from crop to wild plant populations, Haygood and his colleagues Anthony Ives from UW-Madison and David Andow from UM-St. Paul, developed mathematical models based on fundamental principles of population genetics.

"The key to the models," says Ives, "is that they summarize fundamental properties of evolutionary change. They show what is likely to happen."

Specifically, the models examine how rates of pollen flow and how the selective effects of crop genes on wild plants alter two evolutionary processes: genetic assimilation, wherein crop genes replace genes in wild populations, and demographic swamping, wherein wild populations shrink in size because crop-wild hybrids are less fertile.

"Genetic assimilation and demographic swamping could change a wild plant in some way that might be important for its survival in some habitats or for other organisms that depend on them for their survival," says Haygood. "The potential ramifications are huge and diverse."

The research team starts with a simple model, where a wild population of large and constant size receives pollen from a crop that differs genetically by only one gene. They then add complexity, or, as Ives says, "more realism." That is, they consider a crop that is more different genetically and a wild population that is small or varies in size.

The researchers are quick to point out that the models do not distinguish between crops developed through traditional breeding and genetic engineering. "How the genes get in the crops doesn’t matter," explains Haygood. "What’s important is what they do once they’re there."

In both the basic and expanded models, the researchers find that crop genes rapidly can take over wild populations and, sometimes, just a small increase in the rate of pollen flow can make a big difference in the spread of a crop gene. When this happens, says, Ives, "There’s no going back. It’s irreversible."

The findings, explains Haygood, show that few conditions are needed to enable genetic assimilation and demographic swamping. "You don’t need high rates of pollen flow or strongly favored traits," he says. "Crop genes, even fairly deleterious ones, can easily become common in wild populations within 10 to 20 generations."

At the same time, the combined forces of these two processes on the wild populations can change their genetic make-up in unfavorable ways and drastically shrink their population size, leading to what evolutionary biologists call a "migrational meltdown."

Although the models look at gene flow from a crop plant to a wild relative, the researchers say that the models probably also could apply to gene flow from a commercial to a landrace crop raised each season from the previous year’s seed. But they add that more investigation is needed.

The goal of the gene flow models, explain the researchers, is to provide qualitative insight that they hope will enhance the public dialogue on gene flow from crop to wild plants.

"Gene flow from crops to wild relatives is one of a host of environmental issues that humans must deal with," says Haygood. "These models are a resource that can contribute to the discussion."

Contact:

Emily Carlson +1-608-262-9772, emilycarlson@wisc.edu
Ralph Haygood, +1-608-262-9226, rhaygood@wisc.edu
Tony Ives, +1-608-262-1519, arives@wisc.edu

Ralph Haygood | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>