Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vacuum technology developed to control insects in wood

23.07.2003


Virginia Tech wood scientists hope that their vacuum-drying project will benefit wood pallet and container manufacturers and hardwood sawmill businesses across the nation.



"The vacuum controlling system eliminates the need for a heating system, saves energy, and does not release ozone-depleting chemicals into the earth’s atmosphere," says Zhangjjng Chen, one the researchers working on the project at the Center for Unit Load and Design in the wood science and forest products department of Virginia Tech’s College of Natural Resources.

"Plant sanitary measures currently require that wood pallets and containers, which pack goods that are imported or exported, should be heat-treated or fumigated," Chen explains. In response to these requirements, the Center for Unit Load and Design is developing the basis for vacuum control of insects in solid wood packaging materials, which would serve as an alternative to the current method of eliminating insects in wood.


Chen and his research partners project that low pressure, achieved by applying a vacuum to a system, will create an environment sufficiently low in oxygen that will eliminate the insects in several hours to days. Their research data indicates that there may be an opportunity to apply this technology to eliminate insects in wood.

The material being tested is freshly cut red oak. Larvae of the longhorn beetle, Hylotrupes bajulus, will be used for all of the evaluations and will serve as a substitute for the Asian Longhorn Beetle, Anoplophora glabripennis, because life stages are approximately the same. Experts believe the Asian Longhorn Beetle was introduced in America via infested shipping materials.

Principal investigators responsible for the vacuum control project include Virginia Tech’s wood science and forest products research specialist Zhangjjng Chen, professor Marshall White, and entomologist professor William H. Robinson. Chen and White work with the wood and moisture relationship that occurs in vacuum drying. Robinson has extensive knowledge on wood insects.

Researcher: Zhangjjng Chen, 540-231-7107, chengo@vt.edu

Lynn Davis | EurekAlert!
Further information:
http://www.unitload.vt.edu/research%20nonmembers.htm
http://www.technews.vt.edu

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>