Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vacuum technology developed to control insects in wood

23.07.2003


Virginia Tech wood scientists hope that their vacuum-drying project will benefit wood pallet and container manufacturers and hardwood sawmill businesses across the nation.



"The vacuum controlling system eliminates the need for a heating system, saves energy, and does not release ozone-depleting chemicals into the earth’s atmosphere," says Zhangjjng Chen, one the researchers working on the project at the Center for Unit Load and Design in the wood science and forest products department of Virginia Tech’s College of Natural Resources.

"Plant sanitary measures currently require that wood pallets and containers, which pack goods that are imported or exported, should be heat-treated or fumigated," Chen explains. In response to these requirements, the Center for Unit Load and Design is developing the basis for vacuum control of insects in solid wood packaging materials, which would serve as an alternative to the current method of eliminating insects in wood.


Chen and his research partners project that low pressure, achieved by applying a vacuum to a system, will create an environment sufficiently low in oxygen that will eliminate the insects in several hours to days. Their research data indicates that there may be an opportunity to apply this technology to eliminate insects in wood.

The material being tested is freshly cut red oak. Larvae of the longhorn beetle, Hylotrupes bajulus, will be used for all of the evaluations and will serve as a substitute for the Asian Longhorn Beetle, Anoplophora glabripennis, because life stages are approximately the same. Experts believe the Asian Longhorn Beetle was introduced in America via infested shipping materials.

Principal investigators responsible for the vacuum control project include Virginia Tech’s wood science and forest products research specialist Zhangjjng Chen, professor Marshall White, and entomologist professor William H. Robinson. Chen and White work with the wood and moisture relationship that occurs in vacuum drying. Robinson has extensive knowledge on wood insects.

Researcher: Zhangjjng Chen, 540-231-7107, chengo@vt.edu

Lynn Davis | EurekAlert!
Further information:
http://www.unitload.vt.edu/research%20nonmembers.htm
http://www.technews.vt.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>