Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Determine Mechanism For Degradation of G Proteins

23.07.2003


Researchers at the University of California, San Diego (UCSD) School of Medicine have identified a previously unknown component of the body’s cellular garbage disposal called the ubiquitin system, which is responsible for regulation of cell function by removal of abnormal and unneeded proteins.

Published in the July 8, 2003 issue of Proceedings of the National Academy of Sciences, the study provides the first description of a molecule called GAIP interacting protein N terminus (GIPN) that plays a key role in the degradation of G proteins, which are switches that turn activities on or off in the cell.

Senior author Marilyn Farquhar, Ph.D., a UCSD professor and chair of the Department of Cellular and Molecular Medicine, noted the findings should be of interest to the pharmaceutical industry since G proteins regulate everything from hormone secretion to the beating of the heart.



The researchers found that GIPN appears to specifically target G proteins for degradation and thereby regulates G protein signaling by controlling the amount of G protein expressed in the cell. This occurs via GIPN binding to the N terminus of G alpha interacting proteins (GAIP), which is the mechanism that sets the ubiquitin system in motion.

The ubiquitin system is used extensively by the cell for the turnover and degradation of proteins in both the cytoplasm, the material surrounding the nucleus, and in cell membranes. Ubiquitin, itself, is a small peptide tag that marks a protein for destruction. The interaction of GIPN and GAIP, which was also discovered by the UCSD team, is part of the machinery that places the little ubiquitin tag on a protein.

A source of study by numerous research labs, the ubiquitin system is crucial for nearly every significant activity in the cell. Although this system of protein turnover was first identified in the 1930s, the molecular mechanisms responsible for the process have remained largely unknown.

Ubiquitin-mediated degradation of proteins plays an important role in the control of numerous processes, such as the way in which extracellular materials are incorporated into a cell, the movement of biochemical signals from the cell membrane, and the regulation of cellular functions such as transcriptional on-off switches. The ubiquitin system has been implicated in the immune response and development. Abnormalities in the system are known to cause pathological conditions, including malignant transformation.

"As usual with scientific projects like this one, you have to go much more into the details of the mechanism," Farquhar said. "We have a number of experiments now underway to firm up the precise mechanism."

"Discovery is finding something new—in this case, a new protein; then, it takes a long time to work out the biology," she added.

The co-first authors of the PNAS paper are Thierry Fischer, Ph.D., an assistant project scientist in Farquhar’s laboratory, and Luc De Vries, Ph.D., a former UCSD post-doctoral student who currently works at the Institut de Recherche Pierre Fabre CRPF, Castres Cedex, France. An additional contributor to the study is Timo Meerloo, B.S., a UCSD research specialist.

The study was funded by the National Institutes of Health.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>