Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers pinpoint genes involved in cancer growth

22.07.2003


In a study made possible by the sequencing of the human genome, scientists at the University of Illinois at Chicago have identified 57 genes involved in the growth of human tumor cells.



Some of these genes appear to be linked with the growth of cancerous cells only - not healthy cells - making them possible targets for new drugs that could halt the spread of disease without necessarily compromising normal processes.

The research relied on a strategy pioneered in the laboratory of Igor Roninson, distinguished professor of molecular genetics in the UIC College of Medicine. The strategy involves cutting human DNA into tiny, random fragments, inserting the fragments into a mammalian cell using a vector, or delivery vehicle, and inducing them to express their genetic information.


Some of the fragments prove to be biologically active by interfering with the function of the genes from which they are derived.

In the new study, certain fragments inhibited the multiplication of breast cancer cells by shutting down the genes necessary for cell growth. The experiment enabled researchers in Roninson’s laboratory, led by research assistant professor Thomas Primiano, to locate 57 genes involved in cell proliferation.

They identified the genes by matching the growth-inhibiting fragments with sequences in the human genome.

"Our strategy was validated by the fact that more than half of the genes we identified were already known to play key roles in the growth of cells or the development of cancers," Roninson said. "Many of the other genes, however, were not previously known to be involved in cell division and proliferation. In fact, the functions of some of these genes were entirely unknown."

Analysis of animal studies conducted by other investigators allowed Roninson’s group to determine which genes were likely involved in the growth of tumor cells but not normal cells. In so-called "knockout" mice, 20 of the genes the scientists identified as essential for the growth of breast cancer cells had previously been disabled.

Lacking any of six of these genes, the animals died in utero. But mice missing any of the other 14 genes matured to adulthood, suffering only limited problems in specific organs.

"Obviously, the best drug targets would be genes that are needed only by cancer cells," Roninson said.

One of the genes the UIC researchers identified manufactures a protein found on the cell surface called L1-CAM, which is involved in the development of the nervous system and was not previously known to play a role in cancer cell growth.

Using antibodies to L1-CAM to disturb its function, the researchers stopped the growth of breast, colon and cervical cancer cells in a petri dish, but left unimpaired the growth of normal breast tissue cells and fibroblasts, which make up connective tissue.

This final experiment, Roninson said, confirmed the value of his team’s study.

"One of the main reasons for sequencing the human genome was the hope that this knowledge would help scientists find molecular targets for new and better medicines," Roninson said. "The genes we have identified clearly have the potential to serve as targets for novel therapeutics in the fight against cancer."

Other UIC researchers involved in the study were Mirza Baig, Anil Maliyekkel, Bey-Dih Chang, Stacey Fellars and Justin Sadhu. The UIC team collaborated with scientists Sergey Axenovich and Tatyana Holzmayer at PPD Discovery, Inc.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu
http://www.uic.edu/depts/mcam

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>