Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On tap: Genomic sequence of an enemy of beer and bread

22.07.2003


A team of scientists - including one from Michigan State University - has announced a genomic sequence for the rest of us: mapping the DNA of a grain fungus that wreaks havoc with beer brewing.

The genomic sequence of the fungal plant pathogen, Fusarium graminearum, has been completed, providing scientists a roadmap to combating a fungus that infects wheat and barley crops, rendering them unusable.

"We have enough to do a tremendous amount of good work," said Frances Trail, MSU associate professor of plant biology. "Now we can begin to unravel mechanisms to combat this fungus which is a devastating problem in Michigan, the Midwest and all over the world."



This fungus is a serious pathogen of wheat and barley in Michigan and throughout the Midwest. It causes Fusarium head blight, which reduces grain yields, and taints grain with mycotoxins that have been found to be detrimental to human and animal health.

Fusarium graminearum also is a pox to beer producers. Malting creates a fungus friendly environment, and barley infected with the fungus produces beer with a vast excess of foam. As a result, the malting barley industry has a zero tolerance for this fungus.

The fungus comes with a steep price tag – rendering crops worthless. For example, head blight outbreaks in the 1990s cost U.S. agriculture $3 billion.

Fusarium graminearum begins its blighting ways as pinprick-sized pods that spit spores into the air. The spores float over grain fields, landing on flowering wheat and barley. The spores grow into the wheat flowers. The often cool, wet weather of the U.S. Midwest provides an ideal environment for the fungus to take hold.

The result:: fields of blight, identified by withered, bleached heads of grain. At harvest, many of the grains are shrunken and white, and harbor the mycotoxins.

"Classical control methods for blight just aren’t working," Trail said. "Sequencing this fungus can be the beginning of designing new methods of control."

The Fusarium graminearum sequencing project represents a partnership between MSU and the Whitehead Institute Center for Genome Research at the Massachusetts Institute of Technology, H. Corby Kistler at the U.S. Department of Agriculture, ARS Cereal Disease Lab of University of Minnesota and Jin-Rong Xu at Purdue University.

Researchers now will work to understand and annotate specific gene function within the sequence. In Trail’s lab, work already has begun on specific genes that appear to control the firing mechanisms of the spore pods.

Frances Trail | EurekAlert!
Further information:
http://www.genome.wi.mit.edu/annotation/fungi/fusarium/index.html
http://www.msu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>