Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On tap: Genomic sequence of an enemy of beer and bread


A team of scientists - including one from Michigan State University - has announced a genomic sequence for the rest of us: mapping the DNA of a grain fungus that wreaks havoc with beer brewing.

The genomic sequence of the fungal plant pathogen, Fusarium graminearum, has been completed, providing scientists a roadmap to combating a fungus that infects wheat and barley crops, rendering them unusable.

"We have enough to do a tremendous amount of good work," said Frances Trail, MSU associate professor of plant biology. "Now we can begin to unravel mechanisms to combat this fungus which is a devastating problem in Michigan, the Midwest and all over the world."

This fungus is a serious pathogen of wheat and barley in Michigan and throughout the Midwest. It causes Fusarium head blight, which reduces grain yields, and taints grain with mycotoxins that have been found to be detrimental to human and animal health.

Fusarium graminearum also is a pox to beer producers. Malting creates a fungus friendly environment, and barley infected with the fungus produces beer with a vast excess of foam. As a result, the malting barley industry has a zero tolerance for this fungus.

The fungus comes with a steep price tag – rendering crops worthless. For example, head blight outbreaks in the 1990s cost U.S. agriculture $3 billion.

Fusarium graminearum begins its blighting ways as pinprick-sized pods that spit spores into the air. The spores float over grain fields, landing on flowering wheat and barley. The spores grow into the wheat flowers. The often cool, wet weather of the U.S. Midwest provides an ideal environment for the fungus to take hold.

The result:: fields of blight, identified by withered, bleached heads of grain. At harvest, many of the grains are shrunken and white, and harbor the mycotoxins.

"Classical control methods for blight just aren’t working," Trail said. "Sequencing this fungus can be the beginning of designing new methods of control."

The Fusarium graminearum sequencing project represents a partnership between MSU and the Whitehead Institute Center for Genome Research at the Massachusetts Institute of Technology, H. Corby Kistler at the U.S. Department of Agriculture, ARS Cereal Disease Lab of University of Minnesota and Jin-Rong Xu at Purdue University.

Researchers now will work to understand and annotate specific gene function within the sequence. In Trail’s lab, work already has begun on specific genes that appear to control the firing mechanisms of the spore pods.

Frances Trail | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>