Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal exposure to two chemicals cause of male reproductive disorders later in life

21.07.2003


Primary author of several recent studies involving di-n-butyl phthalate (DBP) and linuron (L) discusses his findings and what they mean for understanding human development.

Over the last ten years, US researchers have observed a marked increase in some male reproductive disorders, including undescended testicles, increased instances of testicular cancer, and decreased sperm count. In the last 20 years the rates for testicular cancer have grown almost five-fold in Denmark, yet neighboring Finland has not experienced such a dramatic increase. In an effort to explain this phenomenon, scientists have hypothesized that these human male reproductive deficits may have a common origin: a disturbance in the level of androgen and other critical hormones during fetal development. The results from tests with laboratory animals may help scientists better understand the effect of fetal exposure to certain chemicals has on male reproduction abilities later in life.

Paul M.D. Foster, Ph.D., of the National Institutes of Environmental Sciences, Research Triangle Park, NC, and his colleagues have recently co-authored a series of journal articles examining how fetal exposure to two common environmental agents affects the reproductive capabilities of some laboratory animals. Dr. Foster will be discussing their research during a presentation entitled, "Disruption of Male Reproductive Development by Antiandrogens" during the 55th Annual Meeting of the American Association for Clinical Chemistry (AACC), being held at the Pennsylvania Convention Center, Philadelphia, PA, July 20-24, 2003. More than 16,000 attendees are expected.



Background

Dr. Foster and his colleagues have recently published the results of animal studies conducted to explore how two environmental agents, di-n-butyl phthalate (DBP) and linuron (L), can produce a range of reproductive effects in rats, similar to the effects found in humans. Both agents have been related to the incidence of male birth defects at birth and adverse development of male reproduction later in life in rats. The fact that they do so, albeit by differing mechanisms, is likely to help scientists better understand the nature of normal reproductive development.

Di-n-butyl phthalate

DBP is a chemical used as a placticizer and solvent that is in nearly every environmental medium, including air, water, and food. Because it is ubiquitous, some concerns have been raised about its potential health consequences, since one effect of exposure to DBP is that it inhibits the production of androgen, a human male sex hormone. Other effects include malformations of the epididymus, failure of normal testicular descent and malformation of the penis, termed a hypospadias (a condition whereby the urinary tract opening is not located properly at the tip of the penis), a birth defect occurring in every one of 200 male births.

Linuron

Linuron is an herbicide (pesticide) used mainly on soybeans and corn. Because it is sprayed onto crops, a small amount of the chemical is able to incorporate itself into the crop. Unlike DBP, linuron does not decrease the production of androgen, but binds to the androgen receptor to prevent the action of normal androgens. When administered in utero, linuron disturbs the timing of the sequences that must properly take place during fetal development. Linuron interrupts the signals at key times, leading to the development of a variety of birth defects that only affect the male, since it is only the male that requires androgen for their normal reproductive development.

Key Findings

In the studies undertaken by Foster and his colleagues they discovered major malformations, predominantly of the epididymis (an elongated mass of convoluted efferent tubes at the back of the testes), following the administration of the chemicals during critical windows of in utero development (gestation days 12-21). The epididymal malformations were only seen in males after birth.

The series of experiments also found the following:

  • The antiandrogens cause a shortage in testosterone, leading to the various deformities in the fetal male reproductive organs.

  • A leading deformity is malformation of the epididymis, a consequence of the antiandrogens causing direct interference with the fetal reproductive organs and not by interfering with the maternal or fetal endocrine system. The epididymis transports, stores, and matures spermatozoa between the testis and ductus deferens. Blockage of the epididymal structures occurs (similar to a plumbing problem) and leads to infertility and later possible atrophy of the testes.

  • DBP and linuron operate via different mechanisms that affect fetal androgen signaling. The former can lead to failure of the normal development of the reproductive system with malformations in many reproductive organs including hypospadias. (It is noted that hypospadias has shown a significant increase in incidence in the last 20 years and that linuron exposure in the rats led predominantly to a malformation of the epididymis.)

  • The altered adult phenotype following in utero exposure to linuron is very similar to that produced by the antiandrogen DBP, with the exception of testicular lesions and alterations in fetal testosterone levels.

Conclusions

Presently, studies of antiandrogen and the male reproductive system are confined to experimental animals, since human studies exposing pregnant women to large quantities of these chemical agents would be inappropriate. Additionally, common human birth defects are difficult to track and definitively establish cause and effect.

Dr. Foster does not believe that the findings of these animal studies should be cause for alarm. While researchers do not know at what dose level exposure to these chemicals might produce effects in humans, they know that in animals, the dose levels that produce the adverse changes are significantly higher than the levels that have been measured in ongoing human studies.

He does believe that this research, and the similar efforts of other research institutions, will expand the effort to determine how environmental and pharmaceutical antiandrogens may impact on human development. The effects of antiandrogen exposure may not be uniform for any population group. This suggests that research in this field should be linked linked to the ongoing effort to map critical developmental signaling pathways that determine why only some react to these selected agents.

Donna Krupa | EurekAlert!
Further information:
http://www.aacc.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>