Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Link between neuronal calcium channel, mutated gene that causes Huntington’s disease identified


Abnormally high calcium levels spurred on by a mutated gene may lead to the death of neurons associated with Huntington’s disease, an inherited genetic disorder, characterized by mental and physical deterioration, for which there is no known cure.

This discovery by researchers at UT Southwestern Medical Center at Dallas, published in the current issue of Neuron, sheds new light on the process that causes the selective death of neurons in the region of the brain called the striatum. Neurons in this area control emotions, body movements and several other neurological processes, including addiction.

Since the discovery of the huntingtin gene (Htt) in 1993, researchers have been searching for what actually causes certain neurons to die in the striatum, leading to the disease.

"It had not been clear why in Huntington’s only neurons in the striatum are affected," said Dr. Ilya Bezprozvanny, associate professor of physiology and senior author of the study. "We found that the mutant form of the huntingtin protein causes abnormally high calcium levels in neurons, which likely cause them to die.

"This is the first time that we have some idea about what the mutant huntingtin gene does to kill striatum neurons and opens potentially new areas for treatment of the disease."

Calcium triggers the release of neurotransmitter signals, a process that initiates communication between neurons in the brain. But too much calcium, Dr. Bezprozvanny said, kills neurons.

Researchers hope the discovery leads to the development of drugs to block the activation of a receptor linked to calcium signaling in striatal neurons, thus potentially slowing the progression of Huntington’s, Dr. Bezprozvanny said. Currently, transgenic mouse models that express the human mutant form of the Htt are being studied.

"We are going to move from biochemical and cellular studies to studies in transgenic mice to test our hypothesis," he said.

Other UT Southwestern researchers involved in the study include Dr. Anton Maximov, instructor in the Center for Basic Neuroscience; Dr. Tie-Shan Tang, a postdoctoral researcher in physiology and lead author of the study; Dr. Huiping Tu, a postdoctoral researcher in physiology; and Dr. Zhengnan Wang, research associate in physiology. Researchers at the University of British Columbia also contributed.

The study was funded by the National Institutes of Health, the Welch Foundation, the Huntington’s Disease Society of America and the Hereditary Disease Foundation.

Amy Shields | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

Scientists discover particles similar to Majorana fermions

25.10.2016 | Physics and Astronomy

Phenotype at the push of a button

25.10.2016 | Life Sciences

More VideoLinks >>>