Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate tumor-suppressor gene in fruit flies that controls cell production, death

16.07.2003


UT Southwestern Medical Center at Dallas researchers have discovered a tumor-suppressor gene that, in fruit flies, simultaneously restricts cell proliferation and promotes cell death, a process that may also play an important role in the genesis of cancer in humans.



Removal of the gene, hippo, resulted in tumor formation in every organ of the fruit fly. The findings, which are currently online, will appear in an upcoming issue of Cell.

"This is one of the few genes that has been discovered that directly controls two pathways, cell proliferation and cell apoptosis, or cell death," said Dr. Duojia Pan, assistant professor of physiology and senior author of the study. "Sustained growth of cancer cells requires activation of the cell proliferation machinery and suppression of a system called the apoptotic failsafe mechanism. The combination of suppressed cell death and deregulated cell production is likely a key element in cancer."


The researchers identified hippo by screening the fruit fly, or drosophila, genome for mutations that promoted abnormal tissue growth.

To determine the relationship between hippo and a similar protein found in humans, the researchers replaced the tumor-suppressor gene in fruit flies with a protein in humans called MST2. This resulted in the reduction of tumors in the fruit flies, leading researchers to hypothesize that MST2 plays a similar role in human-tumor suppression.

"We hypothesize that this protein (MST2) may be inactivated in some humans, causing the onset of tumor growth. Tumor suppression is important in humans because it is required to restrict abnormal growth of tissues," said Dr. Pan, the Virginia Murchison Linthicum Scholar in Medical Research.

The researchers report also that hippo is linked to two other tumor-suppressing genes, Salvador and warts.

"These three tumor-suppression genes may define a tumor suppression pathway that coordinately regulates cell proliferation and apoptosis," Dr. Pan said. "This pathway may also be involved in the formation of tumors in mammals."

Current research suggests that the human counterpart of Salvador is mutated in several cancer-cell lines.

"Our findings will stimulate investigations of this tumor suppression pathway in human cancers," Pan added.

By studying fruit flies, scientists have the ability to perform more experiments than in human studies because the fruit fly genome is easily mutated. Fruit flies carry approximately 70 percent of the same disease genes as humans.

Dr. Pan is currently studying three other tumor-suppressor genes, including PTEN, Tuberous Sclerosis 1(TSC1) and Tuberous Sclerosis 2 (TSC2). These genes have previously been identified as tumor-suppressor genes in humans.

Other researchers on the study were Drs. Jixin Dong, Jianbin Huang, and Shian Wu, all postdoctoral researchers in physiology.

The study was supported by the National Institutes of Health, the American Heart Association and the American Cancer Society.


###

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>