Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obese mice provide clues to a natural system that puts brakes on obesity

16.07.2003


First gene discovered that is switched on only in fat cells of obese mice

A gene that gets switched on only in the fat cells of obese mice may be a key to preventing obesity in humans, according to new research at The Rockefeller University in New York City and the Joslin Diabetes Center in Boston.

The finding, reported in the August 1 issue of the Journal of Clinical Investigation, marks the first time a gene has been identified that is induced, or activated, in the fat cells of obese animals. According to Rockefeller University professor Markus Stoffel, M.D., Ph.D., lead investigator of the study, the gene, called Foxa-2, inhibits young body cells from becoming mature fat-producing cells called adipocytes. In addition, when this gene is switched on in mature adipocytes, it functions as a brake to slow down further fat production and storage.



"We know a lot about the various molecular pathways that stimulate or promote fat production, and the focus has been on trying to block these pathways to fight obesity," says Stoffel. "This pathway is one of only a few that we know of that naturally work to counteract obesity.

"We have shown that Foxa-2 has two beneficial effects in mice: it counterregulates the formation of fat and it increases the activity of genes important for insulin sensitivity," Stoffel continues. "This is the ideal combination for pharmacologically treating obese or type 2 diabetic patients, or people with a risk of developing obesity."

Foxa-2 was originally discovered in the 1980s by Rockefeller scientist James E. Darnell Jr., M.D., as an activator of genes in the liver. Subsequent research by Stoffel and colleagues at Rockefeller showed that Foxa-2 also activates genes in the insulin-producing islet cells in the pancreas and it is expressed in the gut and the lung. However, previous research by scientists could not provide evidence for its expression in fat cells. The reason, says Stoffel, is "that we did not look at fat cells from obese animals."

"We were only able to find Foxa-2 in fat tissues when we extracted fat from a leptin-deficient mouse, which has a mutation in the ’ob’ gene," says Stoffel, referring to studies with mice that are obese due to low levels of the hormone leptin, the protein product of the obese gene, which was identified by Rockefeller professor Jeffrey M. Friedman, M.D., Ph.D., in the mid-1990s.

Leptin is a hormone secreted by adipocytes that acts on an area of the brain called the hypothalamus. Leptin, Stoffel notes, causes mice and people to lose weight by increasing food intake and energy expenditure, while Foxa-2’s effects are solely on the adipocyte at the level of the cell.

"The discovery of Foxa-2 in fat cells of obese mice was unexpected," Stoffel continues. "We were able to replicate this finding in mice that were obese due to mutations in several genes and in diet-induced obese mice."

Stoffel and colleagues found Foxa-2 expression in mature adipocytes and in pre-adipocytes, young cells that have not accumulated lipids. In addition, Foxa-2 expression was higher in visceral fat than in subcutaneous fat, which is stored under the skin. Visceral fat, found around the gut, is a form of fat that predisposes people to complications of obesity, including type 2 diabetes.

To understand Foxa-2’s role in pre-adipocytes, the Stoffel and his colleagues "overexpressed," or activated above normal levels, Foxa-2 in laboratory cultures of these cells. The scientists then added the necessary hormonal and nutritional signals for these cells to turn into mature fat cells. They found that the pre-adipocytes did not accumulate lipids, and Foxa-2 did not induce genes in these cells that typically are active in mature adipocytes.

During the normal course of differentiation of pre-adipocytes into fat, the activity or expression of a gene called Pref-1 decreases. Stoffel found that Foxa-2 activates Pref-1, and that this activation inhibited the transformation of the laboratory cultured pre-adipocytes into mature adipocytes. The researchers also found overexpression of a set of genes that metabolize glucose, suggesting that Foxa-2 also directly activates these genes.

When Foxa-2 was overexpressed in mature adipocytes that normally do not express Foxa-2, Stoffel and his colleagues found increased expression of genes that break down glucose and burn fat.

"We know that adipocytes of obese animal models are insulin-resistant, so levels of glucose metabolism enzymes decrease," says Stoffel. "At the level of the mature adipocyte, Foxa-2 seems to counterregulate obesity by increasing these enzymes in the adipocyte or at least working against further decreases."

The researchers then tested the effects of removing this gene in living mice. Because both copies of Foxa-2 are necessary for survival, the researchers deleted, or "knocked out," only one copy of this gene, which effectively reduced its activity by 50 percent. When fed a high fat diet for six weeks, these knockout mice gained much more weight than genetically normal mice fed the same diet.

Analysis of fat cells from the Foxa-2 knockout mice showed that activity levels of Pref-1 and the glucose metabolism genes decreased.
"It is now apparent that when we overfeed a mouse and it becomes obese, Foxa-2 is induced, which then activates a set of genes that work against obesity," says Stoffel. "Obviously that’s not sufficient to prevent obesity, but it is sufficient to slow it down. Without this force, the mice accumulate more fat.

"It’s an ineffective system, since otherwise people wouldn’t get obese, but it is clear that if you take the system away, there is an increase in obesity."

The next step for the researchers is to identify stimuli that induce Foxa-2 in people.

"We know that Foxa-2 is expressed in human adipocytes, and if we knew the stimuli that are responsible for inducing Foxa-2 we could potentially induce Foxa-2 activity in people at risk for developing obesity and possibly counteract the development of obesity as well as increase insulin sensitivity," says Stoffel. Both obesity and insulin resistance are risk factors for type 2 diabetes.

In their research with mice, Stoffel and his colleagues showed that growth hormone can induce Foxa-2 in cultured cells that normally don’t express the gene.

Stoffel cautions that growth hormone is not the answer for treating obesity in people.

"We do not believe that growth hormone is responsible for the induction of Foxa-2 in obesity because we know that obese patients actually have a relative deficiency of growth hormone," Stoffel says. "And, we can’t give growth hormone to patients because there are too many negative side effects."

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Custom-tailored strategy against glioblastomas

26.09.2016 | Health and Medicine

Cooling buildings with solar heat

26.09.2016 | Power and Electrical Engineering

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>