Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists find unexpected rapid evolution in Caribbean lizards

15.07.2003


’Lizards gone wild’



Despite social notions of race, human populations around the world are genetically so similar that geneticists find no different sub-species among them. The genetic continuity of human populations is the exception rather than the rule for most animal species, however.

Richard Glor, graduate evolutionary biology student in Arts & Sciences at Washington University in St. Louis, has found extensive genetic differentiation among populations of numerous Anolis lizard species inhabiting single Caribbean islands. While to the naked eye the lizards appear to be uniform, these lizards from the islands of Cuba, Puerto Rico, Hispaniola and Jamaica all show a surprising amount of genetic diversity. Glor goes to the islands and collects lizard samples to study morphology, or body features, and color patterns and then sequences DNA from the different species.


"The levels of differentiation we’re seeing genetically with anoles completely blows away any kind of variation in humans," Glor said. "We’ve found an unanticipated dimension of biodiversity, far greater than ever thought to exist. If you look at DNA in any widespread species, it suggests that several species may actually be present."

The variation that Glor has found startles evolutionary biologists and challenges researchers to understand what is causing the DNA evolution, said Jonathan Losos, Ph.D., Washington University professor of biology, and Glor’s co-adviser.

"What’s so exciting about the variation Rich has discovered is that it’s completely unexpected," said Losos, who has studied Caribbean lizards for more than 15 years. "These lizards have been a model system for understanding evolutionary diversification for 30-plus years,including by a number of famous scientists, yet Rich was the first to discover this. He’s uncovered a whole different layer of speciation and diversification in these species. It’s possible that one group is not just one species but represents maybe six or eight species. At the very least, it shows within species there is a lot of genetic diversity that we had been clueless about beforehand."

Glor’s other adviser is Allan Larson, Ph.D., professor of biology at Washington University. Part of the results of the Anolis study will be published in a forthcoming issue of Evolution.

Glor has found significant geographic differentiation in 11 of 12 widespread Anolis species that he’s analyzed. He has focused on two widely distributed species for each island. Two common ones to all four islands are what are known as a trunk-ground species -- lizards that live at the bottom of tree trunks and forage on the ground – and a trunk-crown species, which live at the treetop and forage in the foliage found there. Glor and Larson’s analyses show that a trunk-crown species in Hispaniola diverged millions of years ago from those in Cuba, and different trunk-crown species on Hispaniola are genetically different from other populations in different regions of the island.

"With each species, there are forms that in one area are greatly different genetically from what we thought was the same species in another area," Glor said.

Glor and his collaborators intend to formulate and test theories on what is driving the genetic variation. Geographic events – the formation of a mountain range, the rising and falling of sea levels, the creation of river valleys – are potential factors. Ecological heterogeneity is another possibility. Species whose ranges extend across a range of different habitats may diverge from one another; for instance, natural selection may drive populations from a dry coastal area on an island to diverge from adjacent populations in wet inland forests. To determine this, the researches will have to analyze the DNA and develop phylogenies –trees that represent evolutionary relationships and incorporate a time factor. This will help them see the patterns of species diversification over time. "What’s so good about anoles is that they are so abundant and what’s so good about these islands is that the same ecologies have evolved independently on all the islands," Glor said.

Another research thrust will be an effort to determine if the size of the island or other factors such as species ecology has an impact on the rate of fragmentation and speciation. Cuba is the largest island, followed by Hispaniola, Jamaica and Puerto Rico. Does speciation occur differently if the playing field is larger?

"Having at least two species from each island and all of the islands varying in size allows us to probe these kinds of questions, " Glor said.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>