Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists find unexpected rapid evolution in Caribbean lizards

15.07.2003


’Lizards gone wild’



Despite social notions of race, human populations around the world are genetically so similar that geneticists find no different sub-species among them. The genetic continuity of human populations is the exception rather than the rule for most animal species, however.

Richard Glor, graduate evolutionary biology student in Arts & Sciences at Washington University in St. Louis, has found extensive genetic differentiation among populations of numerous Anolis lizard species inhabiting single Caribbean islands. While to the naked eye the lizards appear to be uniform, these lizards from the islands of Cuba, Puerto Rico, Hispaniola and Jamaica all show a surprising amount of genetic diversity. Glor goes to the islands and collects lizard samples to study morphology, or body features, and color patterns and then sequences DNA from the different species.


"The levels of differentiation we’re seeing genetically with anoles completely blows away any kind of variation in humans," Glor said. "We’ve found an unanticipated dimension of biodiversity, far greater than ever thought to exist. If you look at DNA in any widespread species, it suggests that several species may actually be present."

The variation that Glor has found startles evolutionary biologists and challenges researchers to understand what is causing the DNA evolution, said Jonathan Losos, Ph.D., Washington University professor of biology, and Glor’s co-adviser.

"What’s so exciting about the variation Rich has discovered is that it’s completely unexpected," said Losos, who has studied Caribbean lizards for more than 15 years. "These lizards have been a model system for understanding evolutionary diversification for 30-plus years,including by a number of famous scientists, yet Rich was the first to discover this. He’s uncovered a whole different layer of speciation and diversification in these species. It’s possible that one group is not just one species but represents maybe six or eight species. At the very least, it shows within species there is a lot of genetic diversity that we had been clueless about beforehand."

Glor’s other adviser is Allan Larson, Ph.D., professor of biology at Washington University. Part of the results of the Anolis study will be published in a forthcoming issue of Evolution.

Glor has found significant geographic differentiation in 11 of 12 widespread Anolis species that he’s analyzed. He has focused on two widely distributed species for each island. Two common ones to all four islands are what are known as a trunk-ground species -- lizards that live at the bottom of tree trunks and forage on the ground – and a trunk-crown species, which live at the treetop and forage in the foliage found there. Glor and Larson’s analyses show that a trunk-crown species in Hispaniola diverged millions of years ago from those in Cuba, and different trunk-crown species on Hispaniola are genetically different from other populations in different regions of the island.

"With each species, there are forms that in one area are greatly different genetically from what we thought was the same species in another area," Glor said.

Glor and his collaborators intend to formulate and test theories on what is driving the genetic variation. Geographic events – the formation of a mountain range, the rising and falling of sea levels, the creation of river valleys – are potential factors. Ecological heterogeneity is another possibility. Species whose ranges extend across a range of different habitats may diverge from one another; for instance, natural selection may drive populations from a dry coastal area on an island to diverge from adjacent populations in wet inland forests. To determine this, the researches will have to analyze the DNA and develop phylogenies –trees that represent evolutionary relationships and incorporate a time factor. This will help them see the patterns of species diversification over time. "What’s so good about anoles is that they are so abundant and what’s so good about these islands is that the same ecologies have evolved independently on all the islands," Glor said.

Another research thrust will be an effort to determine if the size of the island or other factors such as species ecology has an impact on the rate of fragmentation and speciation. Cuba is the largest island, followed by Hispaniola, Jamaica and Puerto Rico. Does speciation occur differently if the playing field is larger?

"Having at least two species from each island and all of the islands varying in size allows us to probe these kinds of questions, " Glor said.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>