Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers define regions of human genes highly prone to mutation

15.07.2003


UT Southwestern Medical Center at Dallas researchers have taken the first step in defining the sites in human genes most prone to mutation, which eventually could lead to discovery of the genetic bases of many human diseases.


Dr. Harold "Skip" Garner, foreground, and John W. "Trey" Fondon III have taken the first step in defining the sites in human genes most prone to mutation.



Their work will appear in an upcoming issue of the journal Gene and is currently available online.

Dr. Harold “Skip” Garner, professor of biochemistry and internal medicine, and his colleagues made their discovery while mining databases of coding single nucleotide polymorphisms (cSNPs) held by the National Center for Biotechnology Information, the SNP Consortium, the National Cancer Institute and the Institute of Medical Genetics at Cardiff, Wales. Single nucleotide polymorphisms (SNPs) are the most common and simplest form of genetic mutation in the human genome.


In their analysis, the researchers showed that a large fraction of human cSNPs occur at only a few distinctive and usually recurrent DNA sequence patterns. However, such events within the genome account for a disproportionate amount of all gene point mutations.

Developing an association between phenotype (the outward, physical manifestation) and genotype (the internally coded, inheritable information) is vital toward understanding and identifying indications of disease.

“This discovery can be used to essentially define the likelihood of one gene to mutate relative to others as a function of both time and environment,” said Monica M. Horvath, molecular biophysics graduate student and co-author. “cSNP trends are critical to quantify in order to develop hypotheses regarding the complexity and range of mutational mechanisms that generate both genome diversity and disease.”

The next phase, Ms. Horvath said, is to employ both experimental and computational tests to benchmark how well these trends can predict mutations not yet found in the human genome.

“What I like the most about this work is that it shows that as proteins evolve, natural selection has considerable latitude, not only in determining the amino acid sequence of a protein, but also in determining how frequently and severely to break it,” said John W. Fondon III, molecular biophysics graduate student and contributing author.

“What Ms. Horvath has done is to essentially crack the code within the code – to reveal how selection exploits redundancy within the genetic code to specify whether a particular amino acid letter in a protein is written in stone, with ink, or in wet sand at low tide.”

An important application of this research is that with enhanced knowledge of where mutations are most likely to occur, medical geneticists can take more aggressive approaches to discover the genetic basis of many human diseases.

“We know the genome is very big, and there currently is no technology to remeasure every single letter of this 3-billion-letter code,” said Dr. Garner.

“A very significant byproduct of this research into the complex interplay between mutation and selection is that Ms. Horvath has revealed some clear rules that can contribute to the design and execution of genetic association studies. This will become an important component of the solution to the currently intractable problems presented by complex diseases that involve many genes.”

The research was supported by a National Institute of Health grant, Program in Genomic Applications grant, the Biological Chemical Countermeasures program of The University of Texas and the state of Texas Advanced Technology Program.

Media Contact: Scott Maier
214-648-3404
or e-mail: scott.maier@utsouthwestern.edu

Scott Maier | UT Southwestern
Further information:
http://irweb.swmed.edu/newspub/newsdetl.asp?story_id=628

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>