Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find mechanism that may determine early blood cell fate

15.07.2003


Remain a hematopoetic stem cell or become a specialized blood cell?



Hematopoietic stem cells, the mother of all blood cells, face a fundamental dilemma in their lives.

Each must either remain a hematopoietic stem cell (HSC) by renewing itself or it must transform into one of eight specialized types of blood cells, such as a red blood cell, a white blood cell or a platelet.


Until recently, scientists didn’t know how the essential cells, which exist in limited amounts in the body, decide which direction to go. Now, researchers in the University of Wisconsin Medical School Department of Pharmacology have found a mechanism that might determine what each HSC will be. The mechanism involves an unexpected interaction between two related proteins.

Appearing in the July 11, 2003 issue of the Proceedings of the National Academy of Sciences (online), the study should be of special interest to hematologists treating patients with severe cancer, which can deplete blood cells, or blood disorders such as sickle cell disease, beta thalassemia or alpha thalassemia. One common treatment has been to introduce HSCs into the body, where they produce new blood cells to counteract abnormal blood cells or replace absent blood cells.

In the recent past, most blood specialists extracted HSC from bone marrow, where the cells occur in relatively large numbers; however, the procedure can be difficult on some patients. Today, a growing number of hematologists are extracting HSC much more easily from peripheral blood or umbilical cord blood. But since fewer cells are present in these sources, it would be advantageous to expand the cells to increase their numbers, explained Emery Bresnick, UW Medical School professor of pharmacology and senior author on the study.

"Manipulations to expand stem cell numbers can cause the cells to lose their ability to remain stem cells," Bresnick said. "Any mechanism that tells you how to maintain stem cell status and prevent differentiation is a good target for modulating and improving this whole process. We discovered a mechanism that is an excellent candidate for controlling the decision of whether the HSC should remain undifferentiated or form blood."

Bresnick and researchers Jeffrey Grass, Meghan Boyer, Soumen Paul and Jing Wu focused on two members of the GATA family of proteins, which are known to play a central role in the development of blood cells. GATA proteins work by attaching to portions of target genes, which either starts or stops the gene activity.

The researchers zeroed in first on GATA-2, which is required in significant levels for HSC to differentiate into intermediate blood cells called multi-potent progenitor cells. But the protein levels must go down before the progenitor cells can undergo further differentiation into distinct blood cell types.

"A central unsolved question was what signals tell the GATA-2 gene to stop producing its proteins so the progenitor cells can form blood," Bresnick said.

To find the answer, he and his team also examined GATA-1. Significant amounts of this protein are critical for the formation of several types of blood cells: red cells, which carry hemoglobin to the lungs; mast cells, which mediate important aspects of immunity and asthma; and platelets, which are needed for blood clotting. However, GATA-1 levels must be lowered if HSCs are to be sustained in an undifferentiated state.

"We reasoned that there was a reciprocal, opposing relationship between GATA-1 and GATA-2," Bresnick said.

By observing the way the proteins interact with sequences of genes in living cells, Bresnick and his colleagues found a master region on the GATA-2 gene that regulates the relationship. They found that when the GATA-2 gene is active, GATA-2 proteins attach to the region; when the GATA-2 gene is inactive, GATA-1 proteins attach to the region. As GATA-1 levels increase, the protein attaches to the region, signaling the GATA-2 gene to stop making GATA-2 protein.

The net effect, said Bresnick, is that if GATA-1 is occupying the master region, the gene activity stops, and the cell will differentiate. On the other hand, if GATA-2 binds to the region, gene activity begins, preventing differentiation and supporting stem cell function.

"It’s a delicate balance between two highly related proteins, but if we can shift the balance by modulating this relationship, we can chose to increase the number of these limited HSC or stimulate hematopoisis," Bresnick said.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>