Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain stem cells are not rejected when transplanted


Findings could improve retinal and other nervous system transplants

For the first time scientists have shown that brain stem cells are immune privileged, which means that they are invisible to a transplant recipient’s immune system and do not trigger the immune system to reject them. These results, published in the July issue of Stem Cells, indicate that using central nervous system stem cells in transplants for diseases of the eye (which is part of the brain), brain, and spinal cord, may eliminate the need for tissue typing before, and immunosuppressive drugs after, transplantation. Ultimately these findings promise to improve the success of retinal transplantation to regenerate vision for millions with macular degeneration, retinitis pigmentosa and diabetic retinopathy and brain transplants to restore functioning for patients with disorders such as Parkinson’s disease.

"These findings are very exciting," says Michael Young, PhD, the lead author of the study and an assistant scientist at Schepens Eye Research Institute and assistant professor at Harvard Medical School. "Though we suspected brain stem cells might be protected in this way, this is the first documented evidence."

Most tissues when transplanted from one body to another are seen by the recipient as foreign and attacked by the immune system. This is because the transplanted tissue has molecules on its surface called antigens that are recognized by the immune system as "not self." If the immune response goes unchecked by drugs to inhibit the attack, it will eventually destroy the transplanted tissue and reject it.

There are sites in the body that do not mount attacks against foreign tissue because to do so would be too self-destructive. For instance, in the eye an all out immune attack would cause inflammation that would destroy delicate tissue and, with it, vision. These sites, which are known as "immune privileged," include the eye, the brain, the digestive system, and the reproductive system.

Young, who in previous research found that brain and retinal stem cells transplanted into the eyes of mice and rats seemed to survive longer and integrate more easily into damaged retinas than other cells, suspected that these "neural stem cells" might be immune privileged. The only way for him to learn the true nature of their immune properties was to transplant these neural stem cells to a part of the recipients body that, unlike the eye, was not immune privileged already.

He and his colleagues chose a part of the body that always rejects transplanted tissue without immunosuppressant drugs and without close tissue typing – the kidney capsule, the pouch in which the kidney is located. This pouch is commonly used to determine whether transplants can survive. Over the years scientists have tested skin, cornea and other tissues in the kidney capsule to evaluate their transplant potential.

Young and his colleagues took brain stem cells from green mice (mice in which the gene for green protein found in jellyfish has been inserted) and placed them under the kidney capsule in other normal non-green mice. After 4 weeks, the team examined the mice and found that the stem cells had not been rejected in any of the mice, and, in fact, had grown into neural tissue.

They concluded that these neural stems cells did not induce an immune response and must be invisible to the immune system, at least initially. The next step was to determine if the cells possessed the antigens that most other tissues had. To test this theory, the team took other brain cells (not stem cells) from the green mice and implanted them in the normal non-green mice. These cells were rejected, and when brain stem cells were then again implanted in the normal non-green mice, they, too were rejected. The team concluded, therefore, that the brain stem cells did possess antigens, but unless the recipient was primed or pre-immunized, the antigens were not visible to the immune system of the recipient and not rejected.

"Understanding the immune properties of these stem cells could have an enormous effect on how we perform brain or retinal transplantations in the future. Stem cells already have the advantage of being able to transform or differentiate into various types of cells and can be reproduced endlessly outside the body. Now we know that at least brain stem cells are immune privileged and can be used without the same worry about tissue matching or immunosuppression that is true for other types of tissue. Young is the director of Schepens Eye Research Institute’s Minda de Gunzburg Retinal Transplantation Research Center. The center is committed, with a focus on retinal regeneration, to unlocking the mysteries of vision and finding the cures for blinding eye diseases that devastate millions in the United States and around the world.

The study, titled "Neural progenitor cells lack immunogenicity and resist destruction as allografts" can be obtained at the Stems Cells website at or by emailing or

Other members of the research team include Junko Hori, Tat Fong Ng, Marie Shatos, and J. Wayne Streilein of Schepens Eye Research Institute of Boston and Henry Klassen of the Stem Cell Research Program at Children’s Hospital of Orange County in Orange, California.

Schepens Eye Research Institute is an affiliate of Harvard Medical School and is the largest independent eye research institute in the world.

Patti Jacobs | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>