Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cells are not rejected when transplanted

14.07.2003


Findings could improve retinal and other nervous system transplants



For the first time scientists have shown that brain stem cells are immune privileged, which means that they are invisible to a transplant recipient’s immune system and do not trigger the immune system to reject them. These results, published in the July issue of Stem Cells, indicate that using central nervous system stem cells in transplants for diseases of the eye (which is part of the brain), brain, and spinal cord, may eliminate the need for tissue typing before, and immunosuppressive drugs after, transplantation. Ultimately these findings promise to improve the success of retinal transplantation to regenerate vision for millions with macular degeneration, retinitis pigmentosa and diabetic retinopathy and brain transplants to restore functioning for patients with disorders such as Parkinson’s disease.

"These findings are very exciting," says Michael Young, PhD, the lead author of the study and an assistant scientist at Schepens Eye Research Institute and assistant professor at Harvard Medical School. "Though we suspected brain stem cells might be protected in this way, this is the first documented evidence."


Most tissues when transplanted from one body to another are seen by the recipient as foreign and attacked by the immune system. This is because the transplanted tissue has molecules on its surface called antigens that are recognized by the immune system as "not self." If the immune response goes unchecked by drugs to inhibit the attack, it will eventually destroy the transplanted tissue and reject it.

There are sites in the body that do not mount attacks against foreign tissue because to do so would be too self-destructive. For instance, in the eye an all out immune attack would cause inflammation that would destroy delicate tissue and, with it, vision. These sites, which are known as "immune privileged," include the eye, the brain, the digestive system, and the reproductive system.

Young, who in previous research found that brain and retinal stem cells transplanted into the eyes of mice and rats seemed to survive longer and integrate more easily into damaged retinas than other cells, suspected that these "neural stem cells" might be immune privileged. The only way for him to learn the true nature of their immune properties was to transplant these neural stem cells to a part of the recipients body that, unlike the eye, was not immune privileged already.

He and his colleagues chose a part of the body that always rejects transplanted tissue without immunosuppressant drugs and without close tissue typing – the kidney capsule, the pouch in which the kidney is located. This pouch is commonly used to determine whether transplants can survive. Over the years scientists have tested skin, cornea and other tissues in the kidney capsule to evaluate their transplant potential.

Young and his colleagues took brain stem cells from green mice (mice in which the gene for green protein found in jellyfish has been inserted) and placed them under the kidney capsule in other normal non-green mice. After 4 weeks, the team examined the mice and found that the stem cells had not been rejected in any of the mice, and, in fact, had grown into neural tissue.

They concluded that these neural stems cells did not induce an immune response and must be invisible to the immune system, at least initially. The next step was to determine if the cells possessed the antigens that most other tissues had. To test this theory, the team took other brain cells (not stem cells) from the green mice and implanted them in the normal non-green mice. These cells were rejected, and when brain stem cells were then again implanted in the normal non-green mice, they, too were rejected. The team concluded, therefore, that the brain stem cells did possess antigens, but unless the recipient was primed or pre-immunized, the antigens were not visible to the immune system of the recipient and not rejected.

"Understanding the immune properties of these stem cells could have an enormous effect on how we perform brain or retinal transplantations in the future. Stem cells already have the advantage of being able to transform or differentiate into various types of cells and can be reproduced endlessly outside the body. Now we know that at least brain stem cells are immune privileged and can be used without the same worry about tissue matching or immunosuppression that is true for other types of tissue. Young is the director of Schepens Eye Research Institute’s Minda de Gunzburg Retinal Transplantation Research Center. The center is committed, with a focus on retinal regeneration, to unlocking the mysteries of vision and finding the cures for blinding eye diseases that devastate millions in the United States and around the world.

The study, titled "Neural progenitor cells lack immunogenicity and resist destruction as allografts" can be obtained at the Stems Cells website at http://stemcells.alphamedpress.org/ or by emailing pattijacobs@hotmail.com or mikey@vision.eri.harvard.edu.

Other members of the research team include Junko Hori, Tat Fong Ng, Marie Shatos, and J. Wayne Streilein of Schepens Eye Research Institute of Boston and Henry Klassen of the Stem Cell Research Program at Children’s Hospital of Orange County in Orange, California.


###
Schepens Eye Research Institute is an affiliate of Harvard Medical School and is the largest independent eye research institute in the world.


Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/
http://stemcells.alphamedpress.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>