Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain stem cells are not rejected when transplanted


Findings could improve retinal and other nervous system transplants

For the first time scientists have shown that brain stem cells are immune privileged, which means that they are invisible to a transplant recipient’s immune system and do not trigger the immune system to reject them. These results, published in the July issue of Stem Cells, indicate that using central nervous system stem cells in transplants for diseases of the eye (which is part of the brain), brain, and spinal cord, may eliminate the need for tissue typing before, and immunosuppressive drugs after, transplantation. Ultimately these findings promise to improve the success of retinal transplantation to regenerate vision for millions with macular degeneration, retinitis pigmentosa and diabetic retinopathy and brain transplants to restore functioning for patients with disorders such as Parkinson’s disease.

"These findings are very exciting," says Michael Young, PhD, the lead author of the study and an assistant scientist at Schepens Eye Research Institute and assistant professor at Harvard Medical School. "Though we suspected brain stem cells might be protected in this way, this is the first documented evidence."

Most tissues when transplanted from one body to another are seen by the recipient as foreign and attacked by the immune system. This is because the transplanted tissue has molecules on its surface called antigens that are recognized by the immune system as "not self." If the immune response goes unchecked by drugs to inhibit the attack, it will eventually destroy the transplanted tissue and reject it.

There are sites in the body that do not mount attacks against foreign tissue because to do so would be too self-destructive. For instance, in the eye an all out immune attack would cause inflammation that would destroy delicate tissue and, with it, vision. These sites, which are known as "immune privileged," include the eye, the brain, the digestive system, and the reproductive system.

Young, who in previous research found that brain and retinal stem cells transplanted into the eyes of mice and rats seemed to survive longer and integrate more easily into damaged retinas than other cells, suspected that these "neural stem cells" might be immune privileged. The only way for him to learn the true nature of their immune properties was to transplant these neural stem cells to a part of the recipients body that, unlike the eye, was not immune privileged already.

He and his colleagues chose a part of the body that always rejects transplanted tissue without immunosuppressant drugs and without close tissue typing – the kidney capsule, the pouch in which the kidney is located. This pouch is commonly used to determine whether transplants can survive. Over the years scientists have tested skin, cornea and other tissues in the kidney capsule to evaluate their transplant potential.

Young and his colleagues took brain stem cells from green mice (mice in which the gene for green protein found in jellyfish has been inserted) and placed them under the kidney capsule in other normal non-green mice. After 4 weeks, the team examined the mice and found that the stem cells had not been rejected in any of the mice, and, in fact, had grown into neural tissue.

They concluded that these neural stems cells did not induce an immune response and must be invisible to the immune system, at least initially. The next step was to determine if the cells possessed the antigens that most other tissues had. To test this theory, the team took other brain cells (not stem cells) from the green mice and implanted them in the normal non-green mice. These cells were rejected, and when brain stem cells were then again implanted in the normal non-green mice, they, too were rejected. The team concluded, therefore, that the brain stem cells did possess antigens, but unless the recipient was primed or pre-immunized, the antigens were not visible to the immune system of the recipient and not rejected.

"Understanding the immune properties of these stem cells could have an enormous effect on how we perform brain or retinal transplantations in the future. Stem cells already have the advantage of being able to transform or differentiate into various types of cells and can be reproduced endlessly outside the body. Now we know that at least brain stem cells are immune privileged and can be used without the same worry about tissue matching or immunosuppression that is true for other types of tissue. Young is the director of Schepens Eye Research Institute’s Minda de Gunzburg Retinal Transplantation Research Center. The center is committed, with a focus on retinal regeneration, to unlocking the mysteries of vision and finding the cures for blinding eye diseases that devastate millions in the United States and around the world.

The study, titled "Neural progenitor cells lack immunogenicity and resist destruction as allografts" can be obtained at the Stems Cells website at or by emailing or

Other members of the research team include Junko Hori, Tat Fong Ng, Marie Shatos, and J. Wayne Streilein of Schepens Eye Research Institute of Boston and Henry Klassen of the Stem Cell Research Program at Children’s Hospital of Orange County in Orange, California.

Schepens Eye Research Institute is an affiliate of Harvard Medical School and is the largest independent eye research institute in the world.

Patti Jacobs | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>