Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cells are not rejected when transplanted

14.07.2003


Findings could improve retinal and other nervous system transplants



For the first time scientists have shown that brain stem cells are immune privileged, which means that they are invisible to a transplant recipient’s immune system and do not trigger the immune system to reject them. These results, published in the July issue of Stem Cells, indicate that using central nervous system stem cells in transplants for diseases of the eye (which is part of the brain), brain, and spinal cord, may eliminate the need for tissue typing before, and immunosuppressive drugs after, transplantation. Ultimately these findings promise to improve the success of retinal transplantation to regenerate vision for millions with macular degeneration, retinitis pigmentosa and diabetic retinopathy and brain transplants to restore functioning for patients with disorders such as Parkinson’s disease.

"These findings are very exciting," says Michael Young, PhD, the lead author of the study and an assistant scientist at Schepens Eye Research Institute and assistant professor at Harvard Medical School. "Though we suspected brain stem cells might be protected in this way, this is the first documented evidence."


Most tissues when transplanted from one body to another are seen by the recipient as foreign and attacked by the immune system. This is because the transplanted tissue has molecules on its surface called antigens that are recognized by the immune system as "not self." If the immune response goes unchecked by drugs to inhibit the attack, it will eventually destroy the transplanted tissue and reject it.

There are sites in the body that do not mount attacks against foreign tissue because to do so would be too self-destructive. For instance, in the eye an all out immune attack would cause inflammation that would destroy delicate tissue and, with it, vision. These sites, which are known as "immune privileged," include the eye, the brain, the digestive system, and the reproductive system.

Young, who in previous research found that brain and retinal stem cells transplanted into the eyes of mice and rats seemed to survive longer and integrate more easily into damaged retinas than other cells, suspected that these "neural stem cells" might be immune privileged. The only way for him to learn the true nature of their immune properties was to transplant these neural stem cells to a part of the recipients body that, unlike the eye, was not immune privileged already.

He and his colleagues chose a part of the body that always rejects transplanted tissue without immunosuppressant drugs and without close tissue typing – the kidney capsule, the pouch in which the kidney is located. This pouch is commonly used to determine whether transplants can survive. Over the years scientists have tested skin, cornea and other tissues in the kidney capsule to evaluate their transplant potential.

Young and his colleagues took brain stem cells from green mice (mice in which the gene for green protein found in jellyfish has been inserted) and placed them under the kidney capsule in other normal non-green mice. After 4 weeks, the team examined the mice and found that the stem cells had not been rejected in any of the mice, and, in fact, had grown into neural tissue.

They concluded that these neural stems cells did not induce an immune response and must be invisible to the immune system, at least initially. The next step was to determine if the cells possessed the antigens that most other tissues had. To test this theory, the team took other brain cells (not stem cells) from the green mice and implanted them in the normal non-green mice. These cells were rejected, and when brain stem cells were then again implanted in the normal non-green mice, they, too were rejected. The team concluded, therefore, that the brain stem cells did possess antigens, but unless the recipient was primed or pre-immunized, the antigens were not visible to the immune system of the recipient and not rejected.

"Understanding the immune properties of these stem cells could have an enormous effect on how we perform brain or retinal transplantations in the future. Stem cells already have the advantage of being able to transform or differentiate into various types of cells and can be reproduced endlessly outside the body. Now we know that at least brain stem cells are immune privileged and can be used without the same worry about tissue matching or immunosuppression that is true for other types of tissue. Young is the director of Schepens Eye Research Institute’s Minda de Gunzburg Retinal Transplantation Research Center. The center is committed, with a focus on retinal regeneration, to unlocking the mysteries of vision and finding the cures for blinding eye diseases that devastate millions in the United States and around the world.

The study, titled "Neural progenitor cells lack immunogenicity and resist destruction as allografts" can be obtained at the Stems Cells website at http://stemcells.alphamedpress.org/ or by emailing pattijacobs@hotmail.com or mikey@vision.eri.harvard.edu.

Other members of the research team include Junko Hori, Tat Fong Ng, Marie Shatos, and J. Wayne Streilein of Schepens Eye Research Institute of Boston and Henry Klassen of the Stem Cell Research Program at Children’s Hospital of Orange County in Orange, California.


###
Schepens Eye Research Institute is an affiliate of Harvard Medical School and is the largest independent eye research institute in the world.


Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/
http://stemcells.alphamedpress.org/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>