Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular signaling system that is crucial for plant fertility

14.07.2003


University of Chicago researchers have found that a substance that functions as a neurotransmitter in humans also plays a crucial role in plant reproduction, guiding growth of the tube that transports sperm from a pollen grain on a flower’s surface to the egg cells within a plant’s ovules.



Their finding, published in the July 11, 2003, issue of the journal Cell, is a major step forward in understanding plant fertility. The discovery could also help researchers understand similar biological processes, such as now nerve cells find each other and make appropriate connections. It may even provide clues about repairing spinal cord injuries.

"Since agriculture, which supplies nearly 80 percent of the world’s food supply, depends so profoundly on plant fertility, understanding this process is fundamentally important," said Daphne Preuss, Ph.D., professor of molecular and cell biology and an investigator in the Howard Hughes Medical Institute at the University of Chicago.


When a pollen grain is deposited on the surface of a flower, it somehow has to grow a tube from the stigma of the flower, past several different cell types to where the eggs are, digesting tissue as it grows to burrow all the way inside. "While a few molecules involved in this process have been identified over the years," said Preuss, "we really still don’t understand how this tube gets from start to finish."

Working with Arabidopsis, a popular model plant, Preuss and colleagues from her lab found that plants produce a carefully controlled gradient of gamma-amino butyric acid (GABA), a molecule best known for its role in the mammalian nervous system, to lure a pollen tube toward the egg cells. GABA acts like a light at the end of a tunnel, stimulating the initial growth of the pollen tube and shining ever brighter as the tube gets closer to its goal.

The researchers found that the key to regulating GABA levels is an enzyme they named POP2 that degrades GABA. Arabidopsis flowers produce high levels of GABA then eliminate varying amounts of it from different structures, so that a small amount is present at the surface of the pistil, where it stimulates pollen tube growth. Higher concentrations are found closer to the eggs, leading the tubes toward the target.

The study grew out of the team’s chance finding of abnormal pollen tubes on plants that were later found to lack POP2.

"We saw the pollen tubes just winding around and totally missing their targets on one particular mutant," said Preuss. Co-author Laura Brass, a former Ph.D. student in the Preuss lab, analyzed the mutant strain and pinpointed the gene that caused the defect, which the researchers named POP2.

By comparing the sequence of the defective protein produced by POP2 to other known proteins, lead author Ravishankar Palanivelu, Ph.D., a post-doctoral fellow in Preuss’s laboratory, concluded that it was an enzyme called an aminotransferase. It was not until the researchers found that the mutant plant contained a hundred-fold elevation in GABA, however, that they learned which molecule the enzyme degraded.

Further studies confirmed that the chemical normally concentrates near the egg-containing ovule. In contrast, in the mutant plants, GABA is diffused throughout the tissues. In these mutants, the pollen tubes are "just overwhelmed with signal," said Preuss. Instead of a light at the end of the tunnel it was "like staring at the sun."

Finding a reproductive role for GABA in plants is a good example of nature’s ability to make the most of what’s available, said Preuss. GABA is small, comparatively simple molecule. Many plants and animals use it as a source of carbon or nitrogen or to send signals from cell to cell. Animals use it to regulate hormone secretion, inhibit certain signals between nerve cells, and perhaps even to guide embryonic neurons to their destination.

GABA is only one of several substances involved in pollen tube guidance, however, said Preuss. The researchers are analyzing other mutants with altered pollen tube growth.


###
The research was supported by the Department of Energy, the Searle Scholars Program and the University of Chicago.

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>