Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers geneticists redefine the nature of hybrid corn

14.07.2003


Scientists at Rutgers, The State University of New Jersey, have unlocked an important door to understanding one of the most important crops in the world – corn. Researchers at Rutgers’ Waksman Institute of Microbiology have redefined the nature of heterosis or hybrid vigor, the phenomenon underlying corn’s remarkable success. Heterosis is the robustness seen in hybrids when different lines are crossed and result in higher yields than either of the parental lines would produce themselves.



Maize (corn) dominates agriculture in the United States, where, according to the National Corn Growers Association, 9 billion bushels are produced annually at a value of more than $21 billion. No crop rivals its total grain yield or the diversity of its uses. Virtually all corn varieties grown today are hybrids. Understanding the genetic basis of heterosis could revolutionize our thinking about genetics and pave the way to even stronger, healthier or more productive strains.

Rentao Song and Joachim Messing of Rutgers’ Waksman Institute of Microbiology discuss their findings in a paper published in the July 22 issue of the Proceedings of the National Academy of Science. The paper is currently available online.


Waksman scientists are deeply involved in the Maize Genome Sequencing Project, an initiative to determine the order and position of the genes on the plant’s large and complex chromosomes. The heterosis investigations were a logical extension of the project.

Song and Messing took a region of a chromosome they had accurately mapped and compared it in two strains of maize – to each other, to hybrid crosses, and to corresponding regions in close relatives of maize – two kinds of rice. They also analyzed gene expression in the maize – whether genes were turned on or off – comparing the maize strains and hybrids.

They found that the same genome interval of the two maize varieties and their hybrids, all members of the same species, was substantially different in each, both in size and content. "Genes are missing or added, as are whole sequence segments that contain more than one gene," wrote Song and Messing. The genetic differences were striking.

When they examined, for instance, the same genome interval of two rice strains, they found far less difference between them – what would typically be expected of any strains from the same species based on pure genetic data.

The significance here is that crossing two different maize strains having dramatically different genetics would be expected to produce a hybrid differing considerably from either parent. The hybrid would have accumulated genes from both parents – genes that complement each other, setting the stage for heterosis. The hybrid should exhibit characteristics with twice the vigor of the parents. To prove that this was really a source of hybrid vigor, the scientists looked at how the genes were expressed in the hybrid offspring and in the parents.

The results showed that the combination of the radically different parental genomes in the offspring produced a hybrid genome where genes absent in one parent were supplied by the other. Messing explained that this "dominance complementation," as it is termed, might logically be viewed as the basis for hybrid vigor. However, the expression data demonstrated a vigor exceeding what would be expected from the simple addition of previously missing genes.

"The ’whole’ – the hybrid offspring – turned out to be much greater than the sum of the parts," said Messing. "This led us to conclude that different regulatory factors from other parts of the genome were also operating in a situation we call ’overdominance.’

"What we are finding is a synergism that is much more than just combining the two parents," he continued. "Not only do the hybrids benefit from genes added by both parents, but their inheritance also includes additional regulatory factors. These two sources of heritable information may well constitute the binary system of the genetic world.

"We got something super – much more than we anticipated. We had heterosis with a firm, verifiable genetic foundation."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>