Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crabs switch skeleton types

11.07.2003


Working with blue crabs, biologists at the University of North Carolina at Chapel Hill have discovered what may turn out to be a previously unrecognized, fundamental and widespread support mechanism in crabs, lobsters, insects and other arthropods that periodically shed their hard external skeletons.



Doctoral student Jennifer R.A. Taylor and William M. Kier, professor of biology, have found that rather than being flaccid and mostly immobile after molting, crabs switch to what’s called hydrostatic support. That very different "skeleton" allows the creatures to move around efficiently, hide and even defend themselves during the week or so it takes for their soft, newly grown shells to stiffen completely.

A report on the discovery appears as the cover story in the July 11 issue of the journal Science. To their knowledge, the work is the first to show animals switching back and forth between two different skeleton forms. "This is an exciting concept for us because it’s not something that we thought animals could do," Kier said. "Crabs certainly are more vulnerable without the tough body armor they grow to protect themselves, but they are not at all helpless. It turns out that they can run around, swim and exert considerable force."


When they need more room to grow, blue crabs swallow a lot of water to puff themselves up and then crack apart and discard their old shells. Within a day, their outer membrane, which is called the cuticle, begins to toughen and harden.

In experiments Taylor conducted under Kier’s supervision, the researchers found that internal pressures were temporarily far higher after molting than they were before. Those fluid forces can be controlled to move legs and claws almost as efficiently as when the interplay between muscles and the outer shells causes movement.

In a preliminary test to determine if hydrostatic pressure was necessary for newly molted crabs to maintain their shape and support, researchers made a small hole in a crab’s cuticle. Because it sealed the hole almost instantaneously, loss of fluid was minimal, Taylor said. After removing a larger part of an entire claw, however, the rest of the claw collapsed like a tire going flat.

Further experiments involving force and pressure sensors showed that when newly molted crabs tried to pull their claws in toward their bodies, their internal hydrostatic pressures shot up, she said. Still more measurements, taken as control experiments, showed that seven days after molting, internal pressures did not increase when the animals pulled in their claws.

"These data imply that hydrostatic support is no longer used once crabs have returned to the hard-shell condition," Taylor wrote. "Most arthropods grow by molting, and thus, many may undergo this change in skeletal support. It is clear that the shedding of the exoskeleton does not incapacitate a crustacean."

Some animals, such as worms and polyps, rely exclusively on hydrostatic support throughout their lives, Kier said. Others, such as mammals, chiefly employ a bony skeleton like humans do, but also usually require hydrostatic support to enable tongues to extend and penises to become erect. Other examples of animals’ supplementary use of such support are elephant trunks and clams’ soft, burrowing "foot" and siphons.

"This is also exciting to us since crustaceans belong to a really big group, the arthropods, which includes insects and are the most diversified non-microscopic animals on Earth," Kier said. "We haven’t looked for this switching back and forth of the skeleton in insects yet, but we will. There is a good chance that we will find it."



The National Science Foundation and the National Aeronautics and Space Administration (NASA) supported the UNC College of Arts and Sciences studies.

By David Williamson
UNC News Services
919-962-8596

Note: Contact Taylor and Kier at 919-962-5017 or billkier@bio.unc.edu

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>