Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crabs switch skeleton types

11.07.2003


Working with blue crabs, biologists at the University of North Carolina at Chapel Hill have discovered what may turn out to be a previously unrecognized, fundamental and widespread support mechanism in crabs, lobsters, insects and other arthropods that periodically shed their hard external skeletons.



Doctoral student Jennifer R.A. Taylor and William M. Kier, professor of biology, have found that rather than being flaccid and mostly immobile after molting, crabs switch to what’s called hydrostatic support. That very different "skeleton" allows the creatures to move around efficiently, hide and even defend themselves during the week or so it takes for their soft, newly grown shells to stiffen completely.

A report on the discovery appears as the cover story in the July 11 issue of the journal Science. To their knowledge, the work is the first to show animals switching back and forth between two different skeleton forms. "This is an exciting concept for us because it’s not something that we thought animals could do," Kier said. "Crabs certainly are more vulnerable without the tough body armor they grow to protect themselves, but they are not at all helpless. It turns out that they can run around, swim and exert considerable force."


When they need more room to grow, blue crabs swallow a lot of water to puff themselves up and then crack apart and discard their old shells. Within a day, their outer membrane, which is called the cuticle, begins to toughen and harden.

In experiments Taylor conducted under Kier’s supervision, the researchers found that internal pressures were temporarily far higher after molting than they were before. Those fluid forces can be controlled to move legs and claws almost as efficiently as when the interplay between muscles and the outer shells causes movement.

In a preliminary test to determine if hydrostatic pressure was necessary for newly molted crabs to maintain their shape and support, researchers made a small hole in a crab’s cuticle. Because it sealed the hole almost instantaneously, loss of fluid was minimal, Taylor said. After removing a larger part of an entire claw, however, the rest of the claw collapsed like a tire going flat.

Further experiments involving force and pressure sensors showed that when newly molted crabs tried to pull their claws in toward their bodies, their internal hydrostatic pressures shot up, she said. Still more measurements, taken as control experiments, showed that seven days after molting, internal pressures did not increase when the animals pulled in their claws.

"These data imply that hydrostatic support is no longer used once crabs have returned to the hard-shell condition," Taylor wrote. "Most arthropods grow by molting, and thus, many may undergo this change in skeletal support. It is clear that the shedding of the exoskeleton does not incapacitate a crustacean."

Some animals, such as worms and polyps, rely exclusively on hydrostatic support throughout their lives, Kier said. Others, such as mammals, chiefly employ a bony skeleton like humans do, but also usually require hydrostatic support to enable tongues to extend and penises to become erect. Other examples of animals’ supplementary use of such support are elephant trunks and clams’ soft, burrowing "foot" and siphons.

"This is also exciting to us since crustaceans belong to a really big group, the arthropods, which includes insects and are the most diversified non-microscopic animals on Earth," Kier said. "We haven’t looked for this switching back and forth of the skeleton in insects yet, but we will. There is a good chance that we will find it."



The National Science Foundation and the National Aeronautics and Space Administration (NASA) supported the UNC College of Arts and Sciences studies.

By David Williamson
UNC News Services
919-962-8596

Note: Contact Taylor and Kier at 919-962-5017 or billkier@bio.unc.edu

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>