Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crabs switch skeleton types

11.07.2003


Working with blue crabs, biologists at the University of North Carolina at Chapel Hill have discovered what may turn out to be a previously unrecognized, fundamental and widespread support mechanism in crabs, lobsters, insects and other arthropods that periodically shed their hard external skeletons.



Doctoral student Jennifer R.A. Taylor and William M. Kier, professor of biology, have found that rather than being flaccid and mostly immobile after molting, crabs switch to what’s called hydrostatic support. That very different "skeleton" allows the creatures to move around efficiently, hide and even defend themselves during the week or so it takes for their soft, newly grown shells to stiffen completely.

A report on the discovery appears as the cover story in the July 11 issue of the journal Science. To their knowledge, the work is the first to show animals switching back and forth between two different skeleton forms. "This is an exciting concept for us because it’s not something that we thought animals could do," Kier said. "Crabs certainly are more vulnerable without the tough body armor they grow to protect themselves, but they are not at all helpless. It turns out that they can run around, swim and exert considerable force."


When they need more room to grow, blue crabs swallow a lot of water to puff themselves up and then crack apart and discard their old shells. Within a day, their outer membrane, which is called the cuticle, begins to toughen and harden.

In experiments Taylor conducted under Kier’s supervision, the researchers found that internal pressures were temporarily far higher after molting than they were before. Those fluid forces can be controlled to move legs and claws almost as efficiently as when the interplay between muscles and the outer shells causes movement.

In a preliminary test to determine if hydrostatic pressure was necessary for newly molted crabs to maintain their shape and support, researchers made a small hole in a crab’s cuticle. Because it sealed the hole almost instantaneously, loss of fluid was minimal, Taylor said. After removing a larger part of an entire claw, however, the rest of the claw collapsed like a tire going flat.

Further experiments involving force and pressure sensors showed that when newly molted crabs tried to pull their claws in toward their bodies, their internal hydrostatic pressures shot up, she said. Still more measurements, taken as control experiments, showed that seven days after molting, internal pressures did not increase when the animals pulled in their claws.

"These data imply that hydrostatic support is no longer used once crabs have returned to the hard-shell condition," Taylor wrote. "Most arthropods grow by molting, and thus, many may undergo this change in skeletal support. It is clear that the shedding of the exoskeleton does not incapacitate a crustacean."

Some animals, such as worms and polyps, rely exclusively on hydrostatic support throughout their lives, Kier said. Others, such as mammals, chiefly employ a bony skeleton like humans do, but also usually require hydrostatic support to enable tongues to extend and penises to become erect. Other examples of animals’ supplementary use of such support are elephant trunks and clams’ soft, burrowing "foot" and siphons.

"This is also exciting to us since crustaceans belong to a really big group, the arthropods, which includes insects and are the most diversified non-microscopic animals on Earth," Kier said. "We haven’t looked for this switching back and forth of the skeleton in insects yet, but we will. There is a good chance that we will find it."



The National Science Foundation and the National Aeronautics and Space Administration (NASA) supported the UNC College of Arts and Sciences studies.

By David Williamson
UNC News Services
919-962-8596

Note: Contact Taylor and Kier at 919-962-5017 or billkier@bio.unc.edu

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>