Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Key Molecular Signal in Plant Pollination

11.07.2003


Nearly 80 percent of the world’s food begins as seeds, including such staple crops as corn, wheat and rice. Despite the importance and ubiquity of seeds, researchers have learned precious little about the processes that regulate plant fertilization, the essential first step in seed formation.


Pollen tubes (red tubules) from the pop2 mutant grow in a tangled mass within female tissues. Rather than efficiently growing up to an ovule (upper right), they instead gather at the ovule’s base.

Photo: Anna Edlund



Now, Howard Hughes Medical Institute (HHMI) researchers have identified a key molecular signal that regulates the growth and guidance of the “pollen tube,” a tunnel formed by the pollen grain that aids in fertilizing the plant’s eggs. They say their initial findings could open a new route to understanding the multitude of interacting control signals that likely guide the pollen tube on its crucial journey.

In an article published in the July 11, 2003, issue of the journal Cell, HHMI investigator Daphne Preuss and her colleagues at the University of Chicago report that the molecule gamma-amino butyric acid (GABA), best known for its role as a neurotransmitter in the mammalian nervous system, is a key signaling molecule that triggers plant reproduction.


“When a pollen grain is deposited on the surface of a flower, it’s like a speck of dust landing on the skin,” said Preuss. “The fertilization process is unlike that in animals, in which the sperm swim through a well-defined cavity. Instead, this pollen grain somehow has to grow a tube from the stigma of the flower, digesting tissue to burrow all the way inside to where the eggs are.

“While a few molecules involved in this process have been identified over the years, we really still don’t understand how this tube gets from start to finish,” said Preuss. “And since the world’s agriculture depends so profoundly on plant fertility, understanding this process is fundamentally important.”

The study began when co-author Laura Brass analyzed a peculiar mutant form, called pop2, of the plant Arabidopsis. A member of the mustard family that also includes cabbage and radish, Arabidopsis is the most popular plant model for biologists, since it is small, prolific, easily grown and has a rapid life cycle.

“When we saw the pollen tubes in pop2 just winding around and totally missing their targets, it just seemed like this was a mutant worth studying,” said Preuss. After laboriously identifying genetic markers in the pop2 genome, Brass pinpointed one specific gene that caused the defect observed in the pop2 mutant. The researchers named the gene POP2.

Lead author of the Cell paper, Ravishankar Palanivelu, compared the sequence of the defective protein produced by the gene POP2 to other known proteins and concluded that it was an enzyme called an aminotransferase. However, it was not until the researchers analyzed an extract of the mutant plant — discovering a hundred-fold elevation in GABA — that they learned which plant molecule the enzyme normally degraded.

Further studies using fluorescent-labeled antibodies to GABA confirmed that the chemical normally concentrates in the pollen tubes near the egg-containing ovule. In contrast, in the pop2-mutant plants, GABA is diffused throughout the tissues.

The researchers did antibody staining and microdissection of normal Arabidopsis ovules, which revealed a concentration gradient of GABA that could act as an attractant for the pollen tube. However, they found, such a gradient was lacking in the pop2-mutants, because the malfunction of the enzyme that breaks down GABA produces a massive increase in the chemical signal. Also, in vitro experiments revealed that pollen required GABA to stimulate growth of pollen tubes. Finally, the researchers conducted studies of various crossbred plants that demonstrated the requirement for a GABA gradient in pollen tube guidance.

“So, in the mutants, the pollen tubes are just overwhelmed with signal, like someone staring at the sun and trying to find their way,” said Preuss. “But in the wild-type plants, the pollen tubes have the molecular equivalent of just the right amount of light to guide them where they need to go.”

According to Preuss, identifying GABA as a key pollen-tube guidance signal represents only the beginning of their exploration of the pollen-tube guidance control machinery. For example, she said, to gain further insight into the machinery, the researchers are analyzing other mutants affecting pollen tube growth, as well as the reproductive metabolic changes in the tissues as they develop.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/preuss2.html

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>