Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Key Molecular Signal in Plant Pollination

11.07.2003


Nearly 80 percent of the world’s food begins as seeds, including such staple crops as corn, wheat and rice. Despite the importance and ubiquity of seeds, researchers have learned precious little about the processes that regulate plant fertilization, the essential first step in seed formation.


Pollen tubes (red tubules) from the pop2 mutant grow in a tangled mass within female tissues. Rather than efficiently growing up to an ovule (upper right), they instead gather at the ovule’s base.

Photo: Anna Edlund



Now, Howard Hughes Medical Institute (HHMI) researchers have identified a key molecular signal that regulates the growth and guidance of the “pollen tube,” a tunnel formed by the pollen grain that aids in fertilizing the plant’s eggs. They say their initial findings could open a new route to understanding the multitude of interacting control signals that likely guide the pollen tube on its crucial journey.

In an article published in the July 11, 2003, issue of the journal Cell, HHMI investigator Daphne Preuss and her colleagues at the University of Chicago report that the molecule gamma-amino butyric acid (GABA), best known for its role as a neurotransmitter in the mammalian nervous system, is a key signaling molecule that triggers plant reproduction.


“When a pollen grain is deposited on the surface of a flower, it’s like a speck of dust landing on the skin,” said Preuss. “The fertilization process is unlike that in animals, in which the sperm swim through a well-defined cavity. Instead, this pollen grain somehow has to grow a tube from the stigma of the flower, digesting tissue to burrow all the way inside to where the eggs are.

“While a few molecules involved in this process have been identified over the years, we really still don’t understand how this tube gets from start to finish,” said Preuss. “And since the world’s agriculture depends so profoundly on plant fertility, understanding this process is fundamentally important.”

The study began when co-author Laura Brass analyzed a peculiar mutant form, called pop2, of the plant Arabidopsis. A member of the mustard family that also includes cabbage and radish, Arabidopsis is the most popular plant model for biologists, since it is small, prolific, easily grown and has a rapid life cycle.

“When we saw the pollen tubes in pop2 just winding around and totally missing their targets, it just seemed like this was a mutant worth studying,” said Preuss. After laboriously identifying genetic markers in the pop2 genome, Brass pinpointed one specific gene that caused the defect observed in the pop2 mutant. The researchers named the gene POP2.

Lead author of the Cell paper, Ravishankar Palanivelu, compared the sequence of the defective protein produced by the gene POP2 to other known proteins and concluded that it was an enzyme called an aminotransferase. However, it was not until the researchers analyzed an extract of the mutant plant — discovering a hundred-fold elevation in GABA — that they learned which plant molecule the enzyme normally degraded.

Further studies using fluorescent-labeled antibodies to GABA confirmed that the chemical normally concentrates in the pollen tubes near the egg-containing ovule. In contrast, in the pop2-mutant plants, GABA is diffused throughout the tissues.

The researchers did antibody staining and microdissection of normal Arabidopsis ovules, which revealed a concentration gradient of GABA that could act as an attractant for the pollen tube. However, they found, such a gradient was lacking in the pop2-mutants, because the malfunction of the enzyme that breaks down GABA produces a massive increase in the chemical signal. Also, in vitro experiments revealed that pollen required GABA to stimulate growth of pollen tubes. Finally, the researchers conducted studies of various crossbred plants that demonstrated the requirement for a GABA gradient in pollen tube guidance.

“So, in the mutants, the pollen tubes are just overwhelmed with signal, like someone staring at the sun and trying to find their way,” said Preuss. “But in the wild-type plants, the pollen tubes have the molecular equivalent of just the right amount of light to guide them where they need to go.”

According to Preuss, identifying GABA as a key pollen-tube guidance signal represents only the beginning of their exploration of the pollen-tube guidance control machinery. For example, she said, to gain further insight into the machinery, the researchers are analyzing other mutants affecting pollen tube growth, as well as the reproductive metabolic changes in the tissues as they develop.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/preuss2.html

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>