Miniature biolab embedded on silicon chip

Researchers from Cornell University have developed a miniaturized DNA-based biological testing system that fits on a silicon chip and can be customized to detect a wide variety of microorganisms. They present their research today at the American Society for Microbiology’s (ASM) Conference on Bio- Micro- Nano-systems.

The chip consists of two areas. The first area captures the DNA from the sample and purifies it. The second is a reaction chamber where a process called polymerase chain reaction is performed to rapidly replicate the selected segment of DNA, which can then be tested.

“Other people have developed real-time PCR on silicon chips, but nobody has really done the purification of the DNA sample on the same chip,” says Nathan Cady, one of the researchers on the study. “As near as we can tell, we are one of the first groups to incorporate the purification step into the chip.”

Cady and his colleagues are currently working on incorporating a 3rd step to the process that uses fluorescence technology where an added dye would glow green to, indicate a positive sample.

The chip itself is 2 cm x 4 cm in size. Because PCR requires a precise series of specific temperatures at specific times, it fits into a tiny device (5 cm x 5 cm x 3 cm) that handles the cycling of the temperature. Once they have finally incorporated the fluorescence, Cady expects they will have a device roughly the size of a shoebox that will be capable of real-time automated detection of biological agents.

“Part of the reason we put these functions on a chip is that it simplifies the process,” says Cady. “You can hand this to someone in the field, someone who is not a trained lab technician, and they can do it.”

Another advantage of this system is that it has a very broad range in what organisms it can be used to detect. That makes it very useful for a variety of purposes from monitoring food and water supplies to detecting agents of biological warfare.

“We can detect pretty much any organism as long as we have the PCR primers for it,” says Cady.

The ASM Conference on Bio-, Micro-, Nanosystems, held in collaboration with the IEEE Engineering in Medicine and Biology Society on July 7-10, 2003 at the Plaza Hotel in New York City, is intended to provide an interdisciplinary forum for microbiologists and engineers to explore ways in which microbiology can contribute to the growing field of nanotechnology. For further information on the meeting contact Jim Sliwa, ASM Office of Communications.

Media Contact

Jim Sliwa EurekAlert!

More Information:

http://www.asmusa.org/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors