Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. researchers discover mechanism for the regulation of low-voltage-activated calcium channels

10.07.2003


Researchers at the University of Virginia Health System have defined a molecular mechanism by which the activity of low-voltage-activated calcium channels can be decreased. Low-voltage-activated, T-type calcium channels are found in many types of tissue and alterations in their activity can contribute to several pathological conditions, including congestive heart failure, hypertension, cardiac arrhythmias, epilepsy and neuropathic pain. The findings will be published in the July 10 edition of Nature. The team led by Paula Q. Barrett, professor of pharmacology and principle investigator of the study, found that G-protein beta gamma subunits, a class of cell membrane proteins that mediate the actions of hormones within the cell, markedly decrease the flow of calcium through these channels into the cell interior. Because elevation of calcium within cells stimulates cellular activity, regulation of calcium entry is an important way by which the function of cells can be controlled. The research uncovered that only one member of a large family of G-protein subunits binds directly to the calcium channel protein to inhibit channel activity.



"These studies identify the T-type calcium channel as a new target for G-protein beta gamma subunits," Barrett said. "The extraordinary specificity of the interaction between these regulatory molecules could be operative in many types of cells and provides exciting insight into the highly selective ways in which cells work. Knowledge of these interactions will lead to the development of new and more specific drugs in the future."



Joshua T. Wolfe, a graduate student whose work is supported by the American Heart Association, conducted much of the work for this research. Support for the research also came from the National Institutes of Health and the University of Virginia Cardiovascular Research Center.

Abena Foreman-Trice | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>