Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. researchers discover mechanism for the regulation of low-voltage-activated calcium channels

10.07.2003


Researchers at the University of Virginia Health System have defined a molecular mechanism by which the activity of low-voltage-activated calcium channels can be decreased. Low-voltage-activated, T-type calcium channels are found in many types of tissue and alterations in their activity can contribute to several pathological conditions, including congestive heart failure, hypertension, cardiac arrhythmias, epilepsy and neuropathic pain. The findings will be published in the July 10 edition of Nature. The team led by Paula Q. Barrett, professor of pharmacology and principle investigator of the study, found that G-protein beta gamma subunits, a class of cell membrane proteins that mediate the actions of hormones within the cell, markedly decrease the flow of calcium through these channels into the cell interior. Because elevation of calcium within cells stimulates cellular activity, regulation of calcium entry is an important way by which the function of cells can be controlled. The research uncovered that only one member of a large family of G-protein subunits binds directly to the calcium channel protein to inhibit channel activity.



"These studies identify the T-type calcium channel as a new target for G-protein beta gamma subunits," Barrett said. "The extraordinary specificity of the interaction between these regulatory molecules could be operative in many types of cells and provides exciting insight into the highly selective ways in which cells work. Knowledge of these interactions will lead to the development of new and more specific drugs in the future."



Joshua T. Wolfe, a graduate student whose work is supported by the American Heart Association, conducted much of the work for this research. Support for the research also came from the National Institutes of Health and the University of Virginia Cardiovascular Research Center.

Abena Foreman-Trice | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>