Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lone gene could force re-think on pest insect control


Scientists have discovered a single gene that gives the vinegar fly resistance to a range of pesticides, including DDT, but warn it could spell disaster if found in pest insect species.

The geneticists from the University of Melbourne fear that should this mutation arise in pest insects, the world will need to rethink its overall control strategies.

The researchers are part of the Centre for Environmental Stress and Adaptation Research (CESAR) a special research centre that includes researchers from the Universities of Melbourne, La Trobe and Monash. They will present their findings as a series of posters at the International Congress of Genetics on Monday 7 July.

The discovery of a single mutation in one gene has provided the fly (Drosophila sp) with resistance to a range of commonly available, but chemically unrelated, pesticides.

What has baffled and worried the researchers is that the flies are rarely targeted with insecticides and many of the chemicals it is resistant to, it has never been exposed to before.

“The fact that a single mutation can confer resistance to the banned insecticide DDT and a range of unrelated pesticides, even to those the species has never encountered, reveals new risks and costs to the chemical control of pest insects,” says Michael Bogwitz, one of the poster authors.

“This research shows how easy it is for a single mutation to have such a diverse impact. A similar mutation in a pest species could have devastating consequences,” he says.

“Unless we reassess our current methods of pest management, our future options for control may become severely restricted.”

Their research suggests the mutation arose in Drosophila soon after the introduction of DDT and has since spread throughout the world. But unlike a normal mutation, this one persisted rather than disappeared as the use of DDT around the world declined.

Mutations normally only persist if there is selective pressures from the environment that give individuals with the mutation an advantage over the rest of the population. When that pressure is removed, for instance the banning of DDT, individuals with the mutation are usually less fit and selected against, with fitter individuals replacing them.

“Having the mutation does not appear to affect the fitness of individuals. This could add to the problem of controlling pest species should the gene be found in these species as well,” says Bogwitz.

“This highlights more than ever that what we do today to control pests could irreversibly change the gene pool of that species,” he says.

The culprit – Cyp6g1
The Drosophila gene causing all the concern is called Cyp6g1. It is part of a large family of genes called the Cytochrome P450 genes that are found in many species, including humans.

Previous studies have implicated some members of this P450 family in pesticide resistance. However the function of the majority of the 90 Drosophila P450 genes is unknown.

CESAR researchers are now analysing these genes to determine their function in Drosophila and in the pest insects, the cotton bollworm (Helicoverpa armigera) and the sheep blowfly responsible for flystrike (Lucilia cuprina).

“Our capacity to control pests would be significantly improved if we understood the defence mechanisms controlled by these genes,” says Trent Perry, member of the poster team.

In the Drosophila, Cyp6g1 confers resistance by producing up to 100 times more than the normal level of protein that breaks down DDT and other pesticides. Given the number of P450 genes present in Drosophila, it was unexpected that a single version of one gene could be associated with such widespread resistance, and that this resistance also applied to a wide range of compounds that bear no resemblance to each other in structure or mode of function. These compounds include organochlorines, organophosphorous, carbamate and insect growth regulator insecticides.

“Our research, so far, does not unequivocally demonstrate that Cyp6g1 is the sole culprit for this resistance, but the current evidence leaves little doubt that about its central role,” says Perry.

Bogwitz and Perry’s posters cover their latest research into the resistance qualities of Cyp6g1 and also provide insight to secondary mechanisms of resistance that may be operating.

The primary research was done by Dr Phil Daborn in the laboratory of Professor Richard ffrench-Constant at the University of Bath. Dr Daborn started the initial work as a PhD student under Dr Phillip Batterham and Professor John McKenzie at the University of Melbourne and is about to start post-doctoral studies in Batterham and McKenzie’s lab. Other collaborators on the poster include Dr Batterham, Dr David Heckel.

Jason Major | University of Melbourne
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>