Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech strategy could create new organs

09.07.2003


Scientists from Harvard Medical School and the Massachusetts Institute of Technology have developed a strategy that could one day be used to create functional human organs such as kidneys and livers. They present their research today at the American Society for Microbiology’s conference on Bio- Micro- Nano-systems.



The technique involves creating a network of microscopic tubes that branch out in a pattern, similar to that seen in the circulatory system, to provide oxygen and nutrients to liver or kidney cells that have been cultured in a lab. Using new fractal computational models, the network is designed and etched onto silicon surfaces which are then used as molds to transfer the pattern to biocompatible polymer films. Two films are then sealed together with a microporous membrane sandwiched between them.

"These technologies create a precise architectural framework for the liver or kidney cells that are responsible for the functional replacement of the vital organs," says Mohammad Kaazempur-Mofrad of MIT’s department of mechanical engineering and division of biological engineering, lead researcher on the study, whose lab is in charge of designing the networks. Jeffrey Borenstein at Draper Laboratory oversees the microfabrication and polymer processing and the principle director of the entire project is Joseph Vacanti of Massachusetts General Hospital.


Conventional tissue engineering methods have been successful in the creation of new tissues including skin and cartilage, but have failed to create large, functional vital organs such as the kidneys and liver. The reason for this, says Kaazempur-Mofrad, is that while they provide a structural support for the cells of the tissue being created, they fail to provide vascular support (in the form of blood vessels to bring oxygen and nutrients) at the level necessary to maintain the cells of these vital organs. This new process addresses that need.

"Our microfabricated devices can efficiently supply oxygen and nutrients to sustain the viability of human liver and kidney cells for at least one week in the lab," says Kaazempur-Mofrad. Experiments showed that 96% of kidney cells survived for one week and 95% of liver cells survived for two weeks.

They also implanted an experimental liver device into rats which lasted a week. The device was only a single layer (researchers expect it could take from 30 to 50 layers to represent a fully functioning liver) so it did not replace the existing liver. Kaazempur-Mofrad and his colleagues plan investigate if this approach works in higher level animals next.

"So far we have succeeded in making individual, functioning units but the ultimate goal is to make whole, functional organs," says Kaazempur-Mofrad.


The ASM Conference on Bio-, Micro-, Nanosystems, held in collaboration with the IEEE Engineering in Medicine and Biology Society on July 7-10, 2003 at the Plaza Hotel in New York City, is intended to provide an interdisciplinary forum for microbiologists and engineers to explore ways in which microbiology can contribute to the growing field of nanotechnology. For further information on the meeting contact Jim Sliwa.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>