Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech strategy could create new organs

09.07.2003


Scientists from Harvard Medical School and the Massachusetts Institute of Technology have developed a strategy that could one day be used to create functional human organs such as kidneys and livers. They present their research today at the American Society for Microbiology’s conference on Bio- Micro- Nano-systems.



The technique involves creating a network of microscopic tubes that branch out in a pattern, similar to that seen in the circulatory system, to provide oxygen and nutrients to liver or kidney cells that have been cultured in a lab. Using new fractal computational models, the network is designed and etched onto silicon surfaces which are then used as molds to transfer the pattern to biocompatible polymer films. Two films are then sealed together with a microporous membrane sandwiched between them.

"These technologies create a precise architectural framework for the liver or kidney cells that are responsible for the functional replacement of the vital organs," says Mohammad Kaazempur-Mofrad of MIT’s department of mechanical engineering and division of biological engineering, lead researcher on the study, whose lab is in charge of designing the networks. Jeffrey Borenstein at Draper Laboratory oversees the microfabrication and polymer processing and the principle director of the entire project is Joseph Vacanti of Massachusetts General Hospital.


Conventional tissue engineering methods have been successful in the creation of new tissues including skin and cartilage, but have failed to create large, functional vital organs such as the kidneys and liver. The reason for this, says Kaazempur-Mofrad, is that while they provide a structural support for the cells of the tissue being created, they fail to provide vascular support (in the form of blood vessels to bring oxygen and nutrients) at the level necessary to maintain the cells of these vital organs. This new process addresses that need.

"Our microfabricated devices can efficiently supply oxygen and nutrients to sustain the viability of human liver and kidney cells for at least one week in the lab," says Kaazempur-Mofrad. Experiments showed that 96% of kidney cells survived for one week and 95% of liver cells survived for two weeks.

They also implanted an experimental liver device into rats which lasted a week. The device was only a single layer (researchers expect it could take from 30 to 50 layers to represent a fully functioning liver) so it did not replace the existing liver. Kaazempur-Mofrad and his colleagues plan investigate if this approach works in higher level animals next.

"So far we have succeeded in making individual, functioning units but the ultimate goal is to make whole, functional organs," says Kaazempur-Mofrad.


The ASM Conference on Bio-, Micro-, Nanosystems, held in collaboration with the IEEE Engineering in Medicine and Biology Society on July 7-10, 2003 at the Plaza Hotel in New York City, is intended to provide an interdisciplinary forum for microbiologists and engineers to explore ways in which microbiology can contribute to the growing field of nanotechnology. For further information on the meeting contact Jim Sliwa.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>