Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech strategy could create new organs

09.07.2003


Scientists from Harvard Medical School and the Massachusetts Institute of Technology have developed a strategy that could one day be used to create functional human organs such as kidneys and livers. They present their research today at the American Society for Microbiology’s conference on Bio- Micro- Nano-systems.



The technique involves creating a network of microscopic tubes that branch out in a pattern, similar to that seen in the circulatory system, to provide oxygen and nutrients to liver or kidney cells that have been cultured in a lab. Using new fractal computational models, the network is designed and etched onto silicon surfaces which are then used as molds to transfer the pattern to biocompatible polymer films. Two films are then sealed together with a microporous membrane sandwiched between them.

"These technologies create a precise architectural framework for the liver or kidney cells that are responsible for the functional replacement of the vital organs," says Mohammad Kaazempur-Mofrad of MIT’s department of mechanical engineering and division of biological engineering, lead researcher on the study, whose lab is in charge of designing the networks. Jeffrey Borenstein at Draper Laboratory oversees the microfabrication and polymer processing and the principle director of the entire project is Joseph Vacanti of Massachusetts General Hospital.


Conventional tissue engineering methods have been successful in the creation of new tissues including skin and cartilage, but have failed to create large, functional vital organs such as the kidneys and liver. The reason for this, says Kaazempur-Mofrad, is that while they provide a structural support for the cells of the tissue being created, they fail to provide vascular support (in the form of blood vessels to bring oxygen and nutrients) at the level necessary to maintain the cells of these vital organs. This new process addresses that need.

"Our microfabricated devices can efficiently supply oxygen and nutrients to sustain the viability of human liver and kidney cells for at least one week in the lab," says Kaazempur-Mofrad. Experiments showed that 96% of kidney cells survived for one week and 95% of liver cells survived for two weeks.

They also implanted an experimental liver device into rats which lasted a week. The device was only a single layer (researchers expect it could take from 30 to 50 layers to represent a fully functioning liver) so it did not replace the existing liver. Kaazempur-Mofrad and his colleagues plan investigate if this approach works in higher level animals next.

"So far we have succeeded in making individual, functioning units but the ultimate goal is to make whole, functional organs," says Kaazempur-Mofrad.


The ASM Conference on Bio-, Micro-, Nanosystems, held in collaboration with the IEEE Engineering in Medicine and Biology Society on July 7-10, 2003 at the Plaza Hotel in New York City, is intended to provide an interdisciplinary forum for microbiologists and engineers to explore ways in which microbiology can contribute to the growing field of nanotechnology. For further information on the meeting contact Jim Sliwa.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>