Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover amyloid-like proteins in bacteria

09.07.2003


Independent research groups have uncovered a new class of proteins, called the chaplins, that function like amyloid fibrils to allow reproductive growth in the bacterium Streptomyces coelicolor. Amyloid proteins are most commonly recognized for their role in Alzheimer’s disease, where they aggregate into insoluble, mesh-like plaques in the brains of Alzheimer’s patients. This finding reveals an unprecedented role for amyloid-like proteins in Gram-positive bacteria.



S. coelicolor is a soil-dwelling bacterium that, along with its relatives, produces the majority of naturally derived antibiotics (e.g., tetracycline and erythromycin), as well as many antitumor, antifungal, and immunosuppressant agents. Unlike most other prokaryotes, S. coelicolor has a complex life cycle, producing two different cell types depending upon environmental conditions: vegetative substrate hyphae that grow in moist soil, and aerial hyphae that grow in air and give rise to reproductive spores.

As published in the July 15th issue of Genes & Development, independent research carried out by Dr. Marie Elliot, Dr. Mark Buttner and colleagues at the John Innes Centre (UK) and Stanford University (USA), and by Dennis Claessen, Dr. Lubbert Dijkhuizen, Dr. Han Wösten and colleagues at the University of Groningen and the University of Utrecht (Netherlands), have identified the chaplin protein family as essential mediators of aerial S. coelicolor growth. The research in the Netherlands was funded by a grant of the National Programme EET (Economy, Ecology and Technology) to find biological alternatives for the environmentally harmful antifouling compounds used today on ships.


Although the two groups used different experimental approaches to identify genes involved in aerial hyphae formation, both reached a common conclusion. Both groups discovered a previously unidentified family of hydrophobic, cell-surface proteins whose eight members (chaplins A-H) are necessary for aerial hyphae formation. In independent experiments, Elliot et al. and Claessen et al. demonstrated that streptomycetes lacking specific chaplin genes were unable to erect aerial hyphae, but that this condition could be restored through the application of exogenous chaplin proteins.

The authors suggest that coating of the aerial hyphae by chaplin proteins may confer hydrophobicity to these structures, allowing them to grow into the air and possibly even preventing back-growth into the moist soil. "The hydrophobic nature of aerial structures could be an ideal property to prevent organisms from fouling in shipping. In our aim to find biological alternatives for antifouling compounds we are currently studying the antifouling properties of these highly surface active proteins," explains Dennis Claessen, of the University of Groningen.

Dr. Dijkhuizen’s group further investigated the role of the chaplin proteins at the soil/air interface, finding that chaplin genes E and H are also expressed in the submerged substrate hyphae. The researchers went on to show that a mixture of chaplin proteins D - H self-assembled into amyloid-like fibrils at the soil/air interface, suggesting that chaplins D-H may help lower the water surface tension to facilitate the breakthrough of aerial structures into air.

The identification of the chaplin proteins in Streptomyces potentially has important implications for its use by the pharmaceutical industry. "Chaplins adopt an amyoid-like structure, and could therefore be used as a model system to find molecules that prevent formation of amyloid fibrils" said Dennis Claessen and Dr. Marie Elliot. Furthermore, this landmark discovery of functional amyloid-like fibrils in Gram-positive bacteria illustrates the diversity of amyloid function across genomes.

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>