Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migration takes guts

07.07.2003


Birds modify digestive physiology during migration



When birds migrate over long distances to and from their breeding grounds, it takes more than strong flight muscles and an innate knowledge of where they’re going. According to a University of Rhode Island researcher, migration also takes guts.

Several studies conducted by URI physiological ecologist Scott McWilliams have shown that birds have a flexible digestive system that they modify to meet the changing energy demands of migration.


"The gut of a migratory bird is a really dynamic organ. In preparation for migration, the gut increases in size tremendously over several days," McWilliams said. "It expands, its cells get larger and it produces new cells so the bird can dramatically increase its food intake and store up energy for the long flight."

But because the digestive system is one of the most metabolically active tissues in the body and it consumes a great deal of energy, it shuts down during migration so more energy can be diverted to fueling flight. This partial atrophy of their digestive system affects birds when they stop to feed at sites along their migration route. McWilliams says that because their digestive system is shut down, the birds must eat less until their gut becomes acclimated and can operate efficiently again.

"We’ve known for many years that birds recovering from a migration flight do not immediately regain body mass, but we didn’t know why. Now it’s clear that this digestive constraint is responsible for the delay and likely affects the pace of a bird’s migration," said the Kingston resident.

One important result of McWilliams’ research is a new understanding of the protein requirements of migratory birds. Ornithologists have long believed that a diet high in energy was all that was necessary to sustain migratory flight. But the URI researcher said that proteins are also needed to build the digestive tract. This need for protein may have a significant impact on habitat management at key migratory stop-over sites.

"To build their digestive tract, birds need foods available in the environment that have sufficient protein," McWilliams said. "When birds feed only on fruits that are high in fat and low in protein, they may have to delay their migration. To help birds ensure a successful migration, we need to ensure, for example, that shrubs along their migratory routes have fruits with higher protein amounts."

Little is known about the nutrients in wild fruits, so McWilliams’ current research is aimed at identifying the shrub species that bear fruit with high protein and energy content.

Funded by the National Science Foundation and the U.S. Department of Agriculture, and with logistical support provided by The Nature Conservancy, McWilliams’ field studies have involved both free-living and captive birds, mostly white-throated sparrows, red-eyed vireos and yellow-rumped warblers. He and his students work each fall on Block Island, R.I. measuring the dynamics of body mass, body composition and gut size of wild songbirds as they stop there during migration. Using experiments with captive birds, he has also examined the physiological effects of short-term fasting, which most birds experience during migration, and then observed the feeding delay that occurs when the birds were then allowed to eat as much as they wanted.

McWilliams began studying the physiology of birds as a graduate student at the University of California at Davis in the early 1990s. He joined the faculty of URI’s Department of Natural Resources Science in 1998 after a three-year postdoctoral fellowship at the University of Wisconsin at Madison.

"Migration is very costly to birds," said McWilliams. "But just like people who exercise to modify aspects of their bodies, birds can modify their bodies too so they can accomplish the formidable feats of endurance required by migration."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>