Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Migration takes guts


Birds modify digestive physiology during migration

When birds migrate over long distances to and from their breeding grounds, it takes more than strong flight muscles and an innate knowledge of where they’re going. According to a University of Rhode Island researcher, migration also takes guts.

Several studies conducted by URI physiological ecologist Scott McWilliams have shown that birds have a flexible digestive system that they modify to meet the changing energy demands of migration.

"The gut of a migratory bird is a really dynamic organ. In preparation for migration, the gut increases in size tremendously over several days," McWilliams said. "It expands, its cells get larger and it produces new cells so the bird can dramatically increase its food intake and store up energy for the long flight."

But because the digestive system is one of the most metabolically active tissues in the body and it consumes a great deal of energy, it shuts down during migration so more energy can be diverted to fueling flight. This partial atrophy of their digestive system affects birds when they stop to feed at sites along their migration route. McWilliams says that because their digestive system is shut down, the birds must eat less until their gut becomes acclimated and can operate efficiently again.

"We’ve known for many years that birds recovering from a migration flight do not immediately regain body mass, but we didn’t know why. Now it’s clear that this digestive constraint is responsible for the delay and likely affects the pace of a bird’s migration," said the Kingston resident.

One important result of McWilliams’ research is a new understanding of the protein requirements of migratory birds. Ornithologists have long believed that a diet high in energy was all that was necessary to sustain migratory flight. But the URI researcher said that proteins are also needed to build the digestive tract. This need for protein may have a significant impact on habitat management at key migratory stop-over sites.

"To build their digestive tract, birds need foods available in the environment that have sufficient protein," McWilliams said. "When birds feed only on fruits that are high in fat and low in protein, they may have to delay their migration. To help birds ensure a successful migration, we need to ensure, for example, that shrubs along their migratory routes have fruits with higher protein amounts."

Little is known about the nutrients in wild fruits, so McWilliams’ current research is aimed at identifying the shrub species that bear fruit with high protein and energy content.

Funded by the National Science Foundation and the U.S. Department of Agriculture, and with logistical support provided by The Nature Conservancy, McWilliams’ field studies have involved both free-living and captive birds, mostly white-throated sparrows, red-eyed vireos and yellow-rumped warblers. He and his students work each fall on Block Island, R.I. measuring the dynamics of body mass, body composition and gut size of wild songbirds as they stop there during migration. Using experiments with captive birds, he has also examined the physiological effects of short-term fasting, which most birds experience during migration, and then observed the feeding delay that occurs when the birds were then allowed to eat as much as they wanted.

McWilliams began studying the physiology of birds as a graduate student at the University of California at Davis in the early 1990s. He joined the faculty of URI’s Department of Natural Resources Science in 1998 after a three-year postdoctoral fellowship at the University of Wisconsin at Madison.

"Migration is very costly to birds," said McWilliams. "But just like people who exercise to modify aspects of their bodies, birds can modify their bodies too so they can accomplish the formidable feats of endurance required by migration."

Todd McLeish | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>