Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migration takes guts

07.07.2003


Birds modify digestive physiology during migration



When birds migrate over long distances to and from their breeding grounds, it takes more than strong flight muscles and an innate knowledge of where they’re going. According to a University of Rhode Island researcher, migration also takes guts.

Several studies conducted by URI physiological ecologist Scott McWilliams have shown that birds have a flexible digestive system that they modify to meet the changing energy demands of migration.


"The gut of a migratory bird is a really dynamic organ. In preparation for migration, the gut increases in size tremendously over several days," McWilliams said. "It expands, its cells get larger and it produces new cells so the bird can dramatically increase its food intake and store up energy for the long flight."

But because the digestive system is one of the most metabolically active tissues in the body and it consumes a great deal of energy, it shuts down during migration so more energy can be diverted to fueling flight. This partial atrophy of their digestive system affects birds when they stop to feed at sites along their migration route. McWilliams says that because their digestive system is shut down, the birds must eat less until their gut becomes acclimated and can operate efficiently again.

"We’ve known for many years that birds recovering from a migration flight do not immediately regain body mass, but we didn’t know why. Now it’s clear that this digestive constraint is responsible for the delay and likely affects the pace of a bird’s migration," said the Kingston resident.

One important result of McWilliams’ research is a new understanding of the protein requirements of migratory birds. Ornithologists have long believed that a diet high in energy was all that was necessary to sustain migratory flight. But the URI researcher said that proteins are also needed to build the digestive tract. This need for protein may have a significant impact on habitat management at key migratory stop-over sites.

"To build their digestive tract, birds need foods available in the environment that have sufficient protein," McWilliams said. "When birds feed only on fruits that are high in fat and low in protein, they may have to delay their migration. To help birds ensure a successful migration, we need to ensure, for example, that shrubs along their migratory routes have fruits with higher protein amounts."

Little is known about the nutrients in wild fruits, so McWilliams’ current research is aimed at identifying the shrub species that bear fruit with high protein and energy content.

Funded by the National Science Foundation and the U.S. Department of Agriculture, and with logistical support provided by The Nature Conservancy, McWilliams’ field studies have involved both free-living and captive birds, mostly white-throated sparrows, red-eyed vireos and yellow-rumped warblers. He and his students work each fall on Block Island, R.I. measuring the dynamics of body mass, body composition and gut size of wild songbirds as they stop there during migration. Using experiments with captive birds, he has also examined the physiological effects of short-term fasting, which most birds experience during migration, and then observed the feeding delay that occurs when the birds were then allowed to eat as much as they wanted.

McWilliams began studying the physiology of birds as a graduate student at the University of California at Davis in the early 1990s. He joined the faculty of URI’s Department of Natural Resources Science in 1998 after a three-year postdoctoral fellowship at the University of Wisconsin at Madison.

"Migration is very costly to birds," said McWilliams. "But just like people who exercise to modify aspects of their bodies, birds can modify their bodies too so they can accomplish the formidable feats of endurance required by migration."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>