Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Iowa study adds to understanding of salt-taste

03.07.2003


Saltiness often enhances our enjoyment of certain foods -- think French fries or a Margarita. But salt is an essential nutrient for humans and other animals, and far from being a trivial matter of taste, the ability to detect salt is critical for survival. A University of Iowa study provides insight on how humans and other animals are able to detect salt. The study appears in the July 3 issue of Neuron.



"Given that salt is essential for survival, it is not surprising that animals have developed the ability to detect salt, even at low concentrations. This sense allows them to seek out, and then consume salt," said Michael Welsh, M.D., the Roy J. Carver Biomedical Research Chair in Internal Medicine and Physiology and Biophysics, UI Professor, and Howard Hughes Medical Institute Investigator. "We were interested in identifying the receptors that detect small quantities of salt."

The ability to detect when something is too salty is also important. Consuming very high concentrations of salt could be potentially harmful.


Previous research suggested a role for a specific type of protein in salt-sensing. Lei Liu, Ph.D., UI postdoctoral researcher and lead author of the study, and colleagues turned to the fruit fly (Drosophila melanogaster) to investigate these proteins, known as ion channel proteins.

Fruit flies and humans share the ability to detect salt. Fruit flies also respond to salt in ways that are similar to those seen in humans and other animals. For example, fruit flies are attracted to low salt but are repelled by high salt.

"In humans the taste system is pretty much a puzzle because it is hard to study," Liu said. "But in fruit flies it is very easy to study and you can quickly test ideas. Also, fruit flies are a great genetic model where you can easily screen many different genes to determine what they do and how they interact."

The ion channel genes studied are called pickpocket (ppk). The UI team discovered that two of these ion channel genes are involved in the detection of low salt concentrations. The study also suggests that these genes play some role in detecting high salt concentrations, but it is likely that other pathways also are involved in high salt detection.

The UI team focused on the two pickpocket genes, ppk11 and ppk19, because they found that these genes are expressed in body parts of the flies that are involved in taste-sensing. In the fruit fly larva (young flies) the genes are expressed in a body part known as the terminal organ, which resembles a human taste bud.

Using a series of behavioral experiments, the UI researchers discovered that disrupting the two genes impaired the ability of young flies to detect low salt concentrations.

Normally, young fruit flies prefer water containing low salt concentrations to plain water. However, young flies with disrupted genes were unable to detect low salt. Disrupting either gene also altered how both young and adult flies reacted to high salt concentrations.

"When we disrupt the genes we see defects in behavior," Liu said. "To see if the receptor cell itself is being affected, we measured the action potential (nerve impulse) of the receptor cell in the terminal organ of the mutant larva. The response of the receptor cell to salt is reduced by the mutation."

The UI study also showed that the two genes play a role in the ability of flies to distinguish between different types of salt (sodium chloride and potassium chloride). However, disrupting the genes did not seem to affect the fruit flies’ responses to other tastes.

Understanding salt-sensing mechanisms and identifying two ion-channel proteins that detect low salt in fruit flies may be directly relevant to the salt-sensing system in humans.

Although salt is an essential nutrient, individuals with certain conditions such as high blood pressure or heart failure are often advised to reduced their salt intake. Liu said that identifying the receptors involved in salt detection may eventually aid in the design of salt substitutes, which enhance flavor but do not hurt our health.

In addition to Liu and Welsh, Soren Leonard, Ph.D., David Motto, M.D., Ph.D., Margaret Feller, Margaret Price, Ph.D., and Wayne Johnson, Ph.D., UI professor of physiology and biophysics, also were involved in the study. The work was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.



STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

Media Contact Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>