Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers find genes for depression; Play role in mood disorders, shorter lifespan

02.07.2003


Researchers at the University of Pittsburgh have completed the first survey of the entire human genome for genes that affect the susceptibility of individuals to developing clinical depression.



George S. Zubenko, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine and adjunct professor of biological sciences at Carnegie Mellon University and his team have located a number of chromosomal regions they say hold the genetic keys to a variety of mental illnesses, including major depression and certain addictions. The survey was done in 81 families identified by individuals with recurrent, early-onset, major depressive disorder (RE-MDD), a severe form of depression that runs in families. The Pitt team’s findings are published today in the American Journal of Medical Genetics.

Finding the genetic roots of depression is important for many reasons. Depression is the second-leading cause of disability worldwide, affecting nearly 10 percent of the population. And while scientists have made significant progress developing new drugs to treat it, studies that identify specific risk genes may lead to even more effective drugs designed to target depression in specific individuals.


Twin studies have demonstrated that genetic factors typically account for 40 to 70 percent of the risk for developing major depression, but finding those genes has proven to be a challenge because, as in most diseases, there are likely numerous genes involved and only individuals with certain combinations of those genes develop the disorder.

Of equal interest is a secondary finding that – longevity in the families who carry these genes is significantly reduced.

The survey revealed 19 loci – small regions on chromosomes where genes reside – that appear to influence susceptibility to depressive disorders. The results extended the investigators’ previous finding that a small region of chromosome 2q containing the CREB1 gene affects the vulnerability of women to developing depression. And at least some of the 19 depression vulnerability loci appear to work in concert to affect a person’s risk of developing depression. According to Dr. Zubenko, "Greater scrutiny of the chromosome 2 locus has provided stronger evidence for the role of CREB1 as a risk gene for depressive disorders among women. In addition, five of the new genetic loci appear to interact with the CREB1 region to affect the risk of developing clinical depression in these families.

"Women are twice as likely as men to develop depression, and genetic differences appear to account for some of that disparity," said Dr. Zubenko. Sex-specific loci were common and preferentially affected the vulnerability of women to developing unipolar mood disorders. Evidence of at least one male-specific risk locus also was found. The sex-specific effects of particular risk genes for depression may result from the interactions of these genes and their products with sex hormones.

These findings suggest there are important differences in the molecular pathophysiology of mood disorders in men and women, or in the mechanisms that determine resistance to stressful stimuli. They may also help explain the vulnerability of women to depression during times of significant hormonal fluctuation including puberty, menstrual cycling, pregnancy and childbirth and menopause. Conversely, age-related reductions in hormone levels may contribute to a reduced proportion of familial cases of depression among depressions that arise later in life.

CREB1 is a gene that encodes a regulatory protein called CREB that orchestrates the expression of programs of other genes that play important roles in the brain and the rest of the body. The widespread importance of CREB as a genetic regulator may influence the development of additional psychiatric disorders related to depression, such as alcoholism and other addictions, as well as medical conditions outside of the nervous system that are associated with depression. For example, three of the new linkage regions affected the risk of developing a spectrum of depressive disorders including alcohol and other substance use disorders.

Remarkably, deceased members of the 81 families died at an age eight years younger than the general population and over 40 percent died before the age of 65. This difference in mortality was spread across the lifespan, including a five-fold increase in the proportion of children who died in the first year of life and several-fold increases in deaths by suicide, homicide and liver disease. However, most premature deaths occurred from "natural causes" including heart disease, cancer and stroke. "Tracking down the risk genes in these regions is an obvious priority, and we expect that the research will connect clinical depression and other medical disorders at their most fundamental levels," said Dr. Zubenko.

Information provided by the Human Genome Project is enabling the investigators to make important progress toward this goal. In 18 of the 19 newly identified genetic regions, the authors found candidate genes that participate in cell signaling pathways that converge on CREB. These observations provide an important new perspective on the biology of depression and its treatments that focuses on cell signaling pathways rather than particular neurotransmitters.

"The identification and characterization of susceptibility genes and their products will provide new opportunities for drug development and disease prevention, new information about the biology of mood and its regulation, and new insights into the interactions of mental illness and the human life span," said Dr. Zubenko. "Genotyping markers in chromosomal regions that harbor susceptibility genes may provide more immediate advances in the treatment of major depression. For example, individuals with particular genetic markers in these regions may respond better to particular current treatments than others. This strategy may enable clinicians to use genetic markers to better match individual patients to treatments to which they will optimally respond, while minimizing side effects."

Other researchers involved in this study include: Brion S. Maher, Ph.D.; Hugh B. Hughes III, M.S.; Wendy N. Zubenko, Ed.D., M.S.N..; J. Scott Stiffler, B.S.; Barry B. Kaplan, Ph.D.; and Mary L. Marazita, Ph.D.



The study received funding from the National Institute of Mental Health.
For more information on the Molecular Neurobiology and Genetics Lab at the University of Pittsburgh, please see http://www.zubenkolab.pitt.edu/.

CONTACT:
Craig Dunhoff
Jane Duffield
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: DunhoffCC@upmc.edu
DuffieldDJ@upmc.edu

Craig Dunhoff | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>